TY - JOUR
T1 - Biomimetic self-templating supramolecular structures
AU - Chung, Woo Jae
AU - Oh, Jin Woo
AU - Kwak, Kyungwon
AU - Lee, Byung Yang
AU - Meyer, Joel
AU - Wang, Eddie
AU - Hexemer, Alexander
AU - Lee, Seung Wuk
N1 - Funding Information:
Acknowledgements This work was supported by the National Science Foundation Early Career Development Award (DMR-0747713), the Center of Integrated Nanomechanical Systems (COINS) of the National Science Foundation (grant no. EEC-0832819), the National Institute of Dental and Craniofacial Research (R21DE018360), the Defense Advanced Research Projects Agency (DARPA) program on Tip-Based Nanofabrication (TBN), start-up funds from the Nanoscience and Nanotechnology Institute at the University of California, Berkeley, the Laboratory Directed Research and Development fund from the Lawrence Berkeley National Laboratory, and the Korea Research Foundation Grant (to W.J.C.) funded by the Korean government (MOEHRD) (KRF-2006-352-D00048).
PY - 2011/10/20
Y1 - 2011/10/20
N2 - In nature, helical macromolecules such as collagen, chitin and cellulose are critical to the morphogenesis and functionality of various hierarchically structured materials. During tissue formation, these chiral macromolecules are secreted and undergo self-templating assembly, a process whereby multiple kinetic factors influence the assembly of the incoming building blocks to produce non-equilibrium structures. A single macromolecule can form diverse functional structures when self-templated under different conditions. Collagen type I, for instance, forms transparent corneal tissues from orthogonally aligned nematic fibres, distinctively coloured skin tissues from cholesteric phase fibre bundles, and mineralized tissues from hierarchically organized fibres. Nature's self-templated materials surpass the functional and structural complexity achievable by current top-down and bottom-up fabrication methods. However, self-templating has not been thoroughly explored for engineering synthetic materials. Here we demonstrate the biomimetic, self-templating assembly of chiral colloidal particles (M13 phage) into functional materials. A single-step process produces long-range-ordered, supramolecular films showing multiple levels of hierarchical organization and helical twist. Three distinct supramolecular structures are created by this approach: nematic orthogonal twists, cholesteric helical ribbons and smectic helicolidal nanofilaments. Both chiral liquid crystalline phase transitions and competing interfacial forces at the interface are found to be critical factors in determining the morphology of the templated structures during assembly. The resulting materials show distinctive optical and photonic properties, functioning as chiral reflector/filters and structural colour matrices. In addition, M13 phages with genetically incorporated bioactive peptide ligands direct both soft and hard tissue growth in a hierarchically organized manner. Our assembly approach provides insight into the complexities of hierarchical assembly in nature and could be expanded to other chiral molecules to engineer sophisticated functional helical-twisted structures.
AB - In nature, helical macromolecules such as collagen, chitin and cellulose are critical to the morphogenesis and functionality of various hierarchically structured materials. During tissue formation, these chiral macromolecules are secreted and undergo self-templating assembly, a process whereby multiple kinetic factors influence the assembly of the incoming building blocks to produce non-equilibrium structures. A single macromolecule can form diverse functional structures when self-templated under different conditions. Collagen type I, for instance, forms transparent corneal tissues from orthogonally aligned nematic fibres, distinctively coloured skin tissues from cholesteric phase fibre bundles, and mineralized tissues from hierarchically organized fibres. Nature's self-templated materials surpass the functional and structural complexity achievable by current top-down and bottom-up fabrication methods. However, self-templating has not been thoroughly explored for engineering synthetic materials. Here we demonstrate the biomimetic, self-templating assembly of chiral colloidal particles (M13 phage) into functional materials. A single-step process produces long-range-ordered, supramolecular films showing multiple levels of hierarchical organization and helical twist. Three distinct supramolecular structures are created by this approach: nematic orthogonal twists, cholesteric helical ribbons and smectic helicolidal nanofilaments. Both chiral liquid crystalline phase transitions and competing interfacial forces at the interface are found to be critical factors in determining the morphology of the templated structures during assembly. The resulting materials show distinctive optical and photonic properties, functioning as chiral reflector/filters and structural colour matrices. In addition, M13 phages with genetically incorporated bioactive peptide ligands direct both soft and hard tissue growth in a hierarchically organized manner. Our assembly approach provides insight into the complexities of hierarchical assembly in nature and could be expanded to other chiral molecules to engineer sophisticated functional helical-twisted structures.
UR - http://www.scopus.com/inward/record.url?scp=80054967327&partnerID=8YFLogxK
U2 - 10.1038/nature10513
DO - 10.1038/nature10513
M3 - Article
C2 - 22012394
AN - SCOPUS:80054967327
SN - 0028-0836
VL - 478
SP - 364
EP - 368
JO - Nature
JF - Nature
IS - 7369
ER -