Biotransformation products and mineralization potential for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in abiotic versus biological degradation pathways with anthraquinone-2,6-disulfonate (AQDS) and Geobacter metallireducens

Man Jae Kwon, Kevin Thomas Finneran

Research output: Contribution to journalArticlepeer-review

47 Citations (Scopus)

Abstract

This study investigated extracellular electron shuttle-mediated RDX biodegradation and the distribution of ring cleavage metabolites generated by biological degradation (cells) versus the products formed by abiotic degradation (reduced electron shuttles), and when the two pathways were acting simultaneously. All pathways were influenced by pH. Buffered suspensions (pH 6.8/7.9/9.2) were performed with cell-free anthrahydroquinone-2,6-disulfonate as the sole electron donor, cells (Geobacter metallireducens) + acetate, or cells/acetate + anthraquinone-2,6-disulfonate as an electron shuttle. The metabolites identified included methylenedinitramine, formaldehyde, nitrous oxide, nitrite, ammonium and carbon dioxide. As pH increased, the rates of RDX reduction by AH2QDS also increased. Cells alone reduced RDX faster at the lower pH values. However, at all pH the rates of the electron shuttle-mediated pathways were consistently the fastest, and the proportion of carbon present as formaldehyde, which is a precursor to mineralization, was highest in the presence of electron shuttles. Formaldehyde accounted for 45/51/54% of the carbon in electron shuttle amended cell suspensions as opposed to 13/42/45% of carbon without shuttles at the pH 6.8/7.9/9.2, respectively. Approximately 7-20% of RDX was mineralized to CO2 in the presence of cells at all pH tested; AQDS increased the extent of 14CO2 produced. Nitrous oxide and nitrite were end products in the strictly abiotic pathway, but nitrite was depleted in the presence of cells to form ammonium. Understanding the different products formed in the abiotic versus biological pathways and the influence of pH is critical to developing mixed biotic-abiotic remediation strategies for RDX.

Original languageEnglish
Pages (from-to)705-715
Number of pages11
JournalBiodegradation
Volume19
Issue number5
DOIs
Publication statusPublished - 2008 Sept
Externally publishedYes

Bibliographical note

Funding Information:
Acknowledgments We thank Kelly Nevin (University of Massachusetts) for cultures of Geobacteraceae. We appreciate the support of Timm Strathmann and Dongwook Kim (University of Illinois) for formaldehyde analyses. This work was supported by the Department of Defense Strategic Environmental Research and Development Program (SERDP) project number ER-1377.

Keywords

  • Bioremediation
  • Electron shuttling
  • Fe(III)-reducing microorganisms
  • RDX

ASJC Scopus subject areas

  • Environmental Engineering
  • Microbiology
  • Bioengineering
  • Environmental Chemistry
  • Pollution

Fingerprint

Dive into the research topics of 'Biotransformation products and mineralization potential for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in abiotic versus biological degradation pathways with anthraquinone-2,6-disulfonate (AQDS) and Geobacter metallireducens'. Together they form a unique fingerprint.

Cite this