Abstract
A novel approach to blind image quality assessment, called quality comparison network (QCN), is proposed in this paper, which sorts the feature vectors of input images according to their quality scores in an embedding space. QCN employs comparison transformers (CTs) and score pivots, which act as the centroids of feature vectors of similar-quality images. Each CT updates the score pivots and the feature vectors of input images based on their ordered correlation. To this end, we adopt four loss functions. Then, we estimate the quality score of a test image by searching the nearest score pivot to its feature vector in the embedding space. Extensive experiments show that the proposed QCN algorithm yields excellent image quality assessment performances on various datasets. Furthermore, QCN achieves great performances in cross-dataset evaluation, demonstrating its superb generalization capability. The source codes are available at https://github.com/nhshin-mcl8/QCN.
Original language | English |
---|---|
Title of host publication | Proceedings - 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024 |
Publisher | IEEE Computer Society |
Pages | 12799-12808 |
Number of pages | 10 |
ISBN (Electronic) | 9798350353006 |
DOIs | |
Publication status | Published - 2024 |
Event | 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024 - Seattle, United States Duration: 2024 Jun 16 → 2024 Jun 22 |
Publication series
Name | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
ISSN (Print) | 1063-6919 |
Conference
Conference | 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024 |
---|---|
Country/Territory | United States |
City | Seattle |
Period | 24/6/16 → 24/6/22 |
Bibliographical note
Publisher Copyright:© 2024 IEEE.
Keywords
- Image quality assessment
- order learning
ASJC Scopus subject areas
- Software
- Computer Vision and Pattern Recognition