Abstract
An ordered mesoporous tungsten-oxide/carbon (denoted as m-WO 3-x-C-s) nanocomposite is synthesized using a simple one-pot method using polystyrene-block-poly(ethylene oxide) (PS-b-PEO) as a structure-directing agent. The hydrophilic PEO block interacts with the carbon and tungsten precursors (resol polymer and WCl6), and the PS block is converted to pores after heating at 700 °C under a nitrogen flow. The m-WO 3-x-C-s nanocomposite has a high Brunauer-Emmett-Teller (BET) surface area and hexagonally ordered pores. Because of its mesoporous structure and high intrinsic density of tungsten oxide, this material exhibits a high average volumetric capacitance and gravimetric capacitance as a pseudocapacitor electrode. In comparison with reduced mesoporous tungsten oxide (denoted as m-WO3-x-h), which is synthesized by a tedious hard template approach and further reduction in a H2/N2 atmosphere, m-WO 3-x-C-s shows a high capacitance and enhanced rate performance, as confirmed by cyclic voltammetry, galvanostatic charge/discharge measurements, and electrochemical impedance spectroscopy. The good performance of m-WO 3-x-C-s is attributed to the high surface area arising from the mesoporous structure, the large interconnected mesopores, and the low internal resistance from the well-dispersed reduced tungsten oxide and amorphous carbon composite structure. Here, the amorphous carbon acts as an electrical pathway for effective pseudocapacitor behavior of WO3-x. An ordered mesoporous tungsten-oxide/carbon (m-WO3-x-C-s) nanocomposite is synthesized using a block-copolymer-assisted one-pot self-assembly method. As a pseudocapacitor electrode, m-WO3-x-C-s exhibits a high average volumetric capacitance of 340 F cm-3 and a gravimetric capacitance of 103 F g-1. The amorphous carbon in the m-WO3-x-C-s decreases the internal resistance of m-WO3-x-C-s electrode by facilitating electric conduction.
Original language | English |
---|---|
Pages (from-to) | 3747-3754 |
Number of pages | 8 |
Journal | Advanced Functional Materials |
Volume | 23 |
Issue number | 30 |
DOIs | |
Publication status | Published - 2013 Aug 12 |
Keywords
- carbon
- electrochemical capacitors
- mesoporous materials
- nanocomposites
- tungsten oxide
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- General Chemistry
- Biomaterials
- General Materials Science
- Condensed Matter Physics
- Electrochemistry