Abstract
Video interpolation increases the temporal resolution of a video sequence by synthesizing intermediate frames between two consecutive frames. We propose a novel deep-learning-based video interpolation algorithm based on bilateral motion estimation. First, we develop the bilateral motion network with the bilateral cost volume to estimate bilateral motions accurately. Then, we approximate bi-directional motions to predict a different kind of bilateral motions. We then warp the two input frames using the estimated bilateral motions. Next, we develop the dynamic filter generation network to yield dynamic blending filters. Finally, we combine the warped frames using the dynamic blending filters to generate intermediate frames. Experimental results show that the proposed algorithm outperforms the state-of-the-art video interpolation algorithms on several benchmark datasets. The source codes and pre-trained models are available at https://github.com/JunHeum/BMBC.
Original language | English |
---|---|
Title of host publication | Computer Vision – ECCV 2020 - 16th European Conference, 2020, Proceedings |
Editors | Andrea Vedaldi, Horst Bischof, Thomas Brox, Jan-Michael Frahm |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 109-125 |
Number of pages | 17 |
ISBN (Print) | 9783030585679 |
DOIs | |
Publication status | Published - 2020 |
Event | 16th European Conference on Computer Vision, ECCV 2020 - Glasgow, United Kingdom Duration: 2020 Aug 23 → 2020 Aug 28 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 12359 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 16th European Conference on Computer Vision, ECCV 2020 |
---|---|
Country/Territory | United Kingdom |
City | Glasgow |
Period | 20/8/23 → 20/8/28 |
Bibliographical note
Publisher Copyright:© 2020, Springer Nature Switzerland AG.
Keywords
- Bilateral cost volume
- Bilateral motion
- Video interpolation
ASJC Scopus subject areas
- Theoretical Computer Science
- General Computer Science