Borophene as an anode material for Ca, Mg, Na or Li ion storage: A first-principle study

Bohayra Mortazavi, Arezoo Dianat, Obaidur Rahaman, Gianaurelio Cuniberti, Timon Rabczuk

Research output: Contribution to journalArticlepeer-review

187 Citations (Scopus)


Borophene, the boron atom analogue to graphene, being atomic thick have been just recently experimentally fabricated. In this work, we employ first-principles density functional theory calculations to investigate the interaction of Ca, Mg, Na or Li atoms with single-layer and free-standing borophene. We first identified the most stable binding sites and their corresponding binding energies as well and then we gradually increased the ions concentration. Our calculations predict strong binding energies of around 4.03 eV, 2.09 eV, 2.92 eV and 3.28 eV between the borophene substrate and Ca, Mg, Na or Li ions, respectively. We found that the binding energy generally decreases by increasing the ions content. Using the Bader charge analysis, we evaluate the charge transfer between the adatoms and the borophene sheet. Our investigation proposes the borophene as a 2D material with a remarkably high capacity of around 800 mA h/g, 1960 mA h/g, 1380 mA h/g and 1720 mA h/g for Ca, Mg, Na or Li ions storage, respectively. This study can be useful for the possible application of borophene for the rechargeable ion batteries.

Original languageEnglish
Pages (from-to)456-461
Number of pages6
JournalJournal of Power Sources
Publication statusPublished - 2016 Oct 15


  • 2D material
  • Batteries
  • Borophene
  • First-principles
  • Li ions
  • Modelling

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Energy Engineering and Power Technology
  • Physical and Theoretical Chemistry
  • Electrical and Electronic Engineering


Dive into the research topics of 'Borophene as an anode material for Ca, Mg, Na or Li ion storage: A first-principle study'. Together they form a unique fingerprint.

Cite this