TY - GEN
T1 - Brain-cloud
T2 - 6th International Workshop on Augmented Reality Environments for Medical Imaging and Computer-Assisted Interventions, MIAR 2013 and 8th International Workshop, AE-CAI 2013, Held in Conjunction with MICCAI 2013
AU - Kim, Minjeong
AU - Wu, Guorong
AU - Wang, Qian
AU - Shen, Dinggang
PY - 2013
Y1 - 2013
N2 - Image registration, which aligns a pair of fixed and moving images, is often tackled by the large shape and intensity variation between the images. As a remedy, we present a generalized registration framework that is capable to predict the initial deformation field between the fixed and moving images, even though their appearances are very different. For the prediction, we learn the prior knowledge on deformation from pre-observed images. Especially, our method is significantly differentiated from previous methods that are usually confined to a specific fixed image, to be flexible for handling arbitrary fixed and moving images. Specifically, our idea is to encapsulate many pre-observed images into a hierarchical infrastructure, termed as cloud, which is able to efficiently compute the deformation pathways between the pre-observed images. After anchoring the fixed and moving images to their respective port images (similar images in terms of intensity appearance) in the cloud, we predict the initial deformation between the fixed and moving images by the deformation pathway between the two port images. Thus, the remaining small deformation can be efficiently refined via most existing deformable registration methods. With the cloud, we have obtained promising registration results on both adult and infant brain images, demonstrating the advantage of the proposed registration framework in improving the registration performance.
AB - Image registration, which aligns a pair of fixed and moving images, is often tackled by the large shape and intensity variation between the images. As a remedy, we present a generalized registration framework that is capable to predict the initial deformation field between the fixed and moving images, even though their appearances are very different. For the prediction, we learn the prior knowledge on deformation from pre-observed images. Especially, our method is significantly differentiated from previous methods that are usually confined to a specific fixed image, to be flexible for handling arbitrary fixed and moving images. Specifically, our idea is to encapsulate many pre-observed images into a hierarchical infrastructure, termed as cloud, which is able to efficiently compute the deformation pathways between the pre-observed images. After anchoring the fixed and moving images to their respective port images (similar images in terms of intensity appearance) in the cloud, we predict the initial deformation between the fixed and moving images by the deformation pathway between the two port images. Thus, the remaining small deformation can be efficiently refined via most existing deformable registration methods. With the cloud, we have obtained promising registration results on both adult and infant brain images, demonstrating the advantage of the proposed registration framework in improving the registration performance.
UR - http://www.scopus.com/inward/record.url?scp=84890897353&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-40843-4_17
DO - 10.1007/978-3-642-40843-4_17
M3 - Conference contribution
AN - SCOPUS:84890897353
SN - 9783642408427
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 153
EP - 161
BT - Augmented Reality Environments for Medical Imaging and Computer-Assisted Interventions - 6th Int. Workshop, MIAR 2013 and 8th Int. Workshop, AE-CAI 2013, Held in Conjunction with MICCAI 2013, Proc.
Y2 - 22 September 2013 through 22 September 2013
ER -