Brain connectivity hyper-network for MCI classification

Biao Jie, Dinggang Shen, Daoqiang Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

16 Citations (Scopus)


Brain connectivity network has been used for diagnosis and classification of neurodegenerative diseases, such as Alzheimer's disease (AD) as well as its early stage, i.e., mild cognitive impairment (MCI). However, conventional connectivity network is usually constructed based on the pairwise correlation among brain regions and thus ignores the higher-order relationship among them. Such information loss is unexpected because the brain itself is a complex network and the higher-order interaction may contain useful information for classification. Accordingly, in this paper, we propose a new brain connectivity hyper-network based method for MCI classification. Here, the connectivity hyper-network denotes a network where an edge can connect more than two brain regions, which can be naturally represented with a hyper-graph. Specifically, we first construct connectivity hyper-networks from the resting-state fMRI time series using sparse representation modeling. Then, we extract three sets of the brain-region specific features from the connectivity hyper-networks, and exploit a manifold regularized multi-task feature selection method to jointly select the most discriminative features. Finally, we use multi-kernel support vector machine (SVM) for classification. The experimental results demonstrate the efficacy of our proposed method for MCI classification with comparison to the conventional connectivity network based methods.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer-Assisted Intervention, MICCAI 2014 - 17th International Conference, Proceedings
PublisherSpringer Verlag
Number of pages9
EditionPART 2
ISBN (Print)9783319104690
Publication statusPublished - 2014
Externally publishedYes
Event17th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2014 - Boston, MA, United States
Duration: 2014 Sept 142014 Sept 18

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NumberPART 2
Volume8674 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349


Other17th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2014
Country/TerritoryUnited States
CityBoston, MA

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)


Dive into the research topics of 'Brain connectivity hyper-network for MCI classification'. Together they form a unique fingerprint.

Cite this