Abstract
We propose a novel automatic colorization technique that learns domain-invariance across multiple source domains and is able to leverage such invariance to colorize grayscale images in unseen target domains. This would be particularly useful for colorizing sketches, line arts, or line drawings, which are generally difficult to colorize due to a lack of data. To address this issue, we first apply existing domain generalization (DG) techniques, which, however, produce less compelling desaturated images due to the network’s over-emphasis on learning domain-invariant contents (or shapes). Thus, we propose a new domain generalizable colorization model, which consists of two modules: (i) a domain-invariant content-biased feature encoder and (ii) a source-domain-specific color generator. To mitigate the issue of insufficient source domain-specific color information in domain-invariant features, we propose a skip connection that can transfer content feature statistics via adaptive instance normalization. Our experiments with publicly available PACS and Office-Home DG benchmarks confirm that our model is indeed able to produce perceptually reasonable colorized images. Further, we conduct a user study where human evaluators are asked to (1) answer whether the generated image looks naturally colored and to (2) choose the best-generated images against alternatives. Our model significantly outperforms the alternatives, confirming the effectiveness of the proposed method. The code is available at https://github.com/Lhyejin/DG-Colorization.
Original language | English |
---|---|
Title of host publication | Computer Vision – ECCV 2022 - 17th European Conference, Proceedings |
Editors | Shai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, Tal Hassner |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 527-543 |
Number of pages | 17 |
ISBN (Print) | 9783031197895 |
DOIs | |
Publication status | Published - 2022 |
Event | 17th European Conference on Computer Vision, ECCV 2022 - Tel Aviv, Israel Duration: 2022 Oct 23 → 2022 Oct 27 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 13677 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 17th European Conference on Computer Vision, ECCV 2022 |
---|---|
Country/Territory | Israel |
City | Tel Aviv |
Period | 22/10/23 → 22/10/27 |
Bibliographical note
Publisher Copyright:© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Keywords
- Automatic colorization
- Domain generalization
- Generative adversarial networks
ASJC Scopus subject areas
- Theoretical Computer Science
- General Computer Science