Buckling Instability Control of 1D Nanowire Networks for a Large-Area Stretchable and Transparent Electrode

Byoung Soo Kim, Hyowon Kwon, Hyun Jeong Kwon, Jun Beom Pyo, Jinwoo Oh, Soo Yeong Hong, Jong Hyuk Park, Kookheon Char, Jeong Sook Ha, Jeong Gon Son, Sang Soo Lee

Research output: Contribution to journalArticlepeer-review

43 Citations (Scopus)


A commonly used strategy to impose deformability on conductive materials is the prestrain method, in which conductive materials are placed on prestretched elastic substrates and relaxed to create wavy or wrinkled structures. However, 1D metallic nanowire (NW) networks typically result in out-of-plane buckling defects and NW fractures, due to their rigid and brittle nature and nonuniform load transfer to specific points of NW. To resolve these problems, an alternative method is proposed to control the elastic modulus of 1D NW networks through contact with various solvents during compressive strain. Through solvent contact, the interface interactions between the NWs and between the NW and substrate can be controlled, and it is shown that the surface instability of the 1D random network is formed differently from a uniform bilayer film, which also can vary with the modulus of the network. For modulus values lower than the critical point, slippage and rearrangement of NW strands mainly occur and individual strands in the network show an in-plane wavy configuration, which is ideal for structural stretchability. Based on the solvent-assisted prestrain method, letter-sized, large-area stretchable, and transparent electrodes with high transparency and conductivity are achieved, and stretchable and transparent alternating current electroluminescent devices for stretchable display applications are also realized.

Original languageEnglish
Article number1910214
JournalAdvanced Functional Materials
Issue number21
Publication statusPublished - 2020 May 1

Bibliographical note

Funding Information:
B.S.K., H.K., and H.J.K. contributed equally to this work. The authors gratefully acknowledge financial support from the Korea Institute of Science and Technology (KIST) Institutional Program (Project No. 2E30160) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. NRF-2019R1A2C2005657).

Publisher Copyright:
© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim


  • buckling instability
  • nanowire networks
  • stretchable electrodes
  • transparent electrodes

ASJC Scopus subject areas

  • General Chemistry
  • General Materials Science
  • Condensed Matter Physics


Dive into the research topics of 'Buckling Instability Control of 1D Nanowire Networks for a Large-Area Stretchable and Transparent Electrode'. Together they form a unique fingerprint.

Cite this