Abstract
The goal of face attribute editing is altering a facial image according to given target attributes such as hair color, mustache, gender, etc. It belongs to the image-to-image domain transfer problem with a set of attributes considered as a distinctive domain. There have been some works in multi-domain transfer problem focusing on facial attribute editing employing Generative Adversarial Network (GAN). These methods have reported some successes but they also result in unintended changes in facial regions - meaning the generator alters regions unrelated to the specified attributes. To address this unintended altering problem, we propose a novel GAN model which is designed to edit only the parts of a face pertinent to the target attributes by the concept of Complementary Attention Feature (CAFE). CAFE identifies the facial regions to be transformed by considering both target attributes as well as “complementary attributes”, which we define as those attributes absent in the input facial image. In addition, we introduce a complementary feature matching to help in training the generator for utilizing the spatial information of attributes. Effectiveness of the proposed method is demonstrated by analysis and comparison study with state-of-the-art methods.
Original language | English |
---|---|
Title of host publication | Computer Vision – ECCV 2020 - 16th European Conference, 2020, Proceedings |
Editors | Andrea Vedaldi, Horst Bischof, Thomas Brox, Jan-Michael Frahm |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 524-540 |
Number of pages | 17 |
ISBN (Print) | 9783030585679 |
DOIs | |
Publication status | Published - 2020 |
Event | 16th European Conference on Computer Vision, ECCV 2020 - Glasgow, United Kingdom Duration: 2020 Aug 23 → 2020 Aug 28 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 12359 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 16th European Conference on Computer Vision, ECCV 2020 |
---|---|
Country/Territory | United Kingdom |
City | Glasgow |
Period | 20/8/23 → 20/8/28 |
Bibliographical note
Funding Information:Acknowledgment. Authors (Jeong gi Kwak and Hanseok Ko) of Korea University are supported by a National Research Foundation (NRF) grant funded by the MSIP of Korea (number 2019R1A2C2009480). David Han’s contribution is supported by the US Army Research Laboratory.
Publisher Copyright:
© 2020, Springer Nature Switzerland AG.
Keywords
- Complementary attention feature
- Complementary feature matching
- Face attribute editing
- GAN
ASJC Scopus subject areas
- Theoretical Computer Science
- General Computer Science