Abstract
We herein demonstrate a novel, versatile approach to produce calcium phosphate (CaP) ceramics with continuously gradient macrochannels using three-dimensional extrusion of a bilayered ceramic-camphene mixture/pure camphene feedrod. In this technique, the pure camphene used as the upper part could be preferentially extruded because of the wall slip phenomenon. This enabled the formation of green filaments comprised of a camphene core surrounded by a ceramic/camphene shell, where the core/shell thickness ratio increased gradually as extrusion proceeded. CaP ceramics with continuously gradient macrochannels could be successfully produced by three-dimensionally depositing the extruded filaments layer-by-layer. With increasing the distance from the dense bottom layer, macrochannels created after the removal of the camphene cores via freeze-drying became larger, while the CaP walls became thinner. The local porosity could increase gradually and continuously from the dense bottom and reach up to ~72 vol%.
Original language | English |
---|---|
Pages (from-to) | 15603-15609 |
Number of pages | 7 |
Journal | Ceramics International |
Volume | 42 |
Issue number | 14 |
DOIs | |
Publication status | Published - 2016 Nov 1 |
Keywords
- Biomedical applications
- Extrusion
- Gradient pores
- Porous ceramics
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Process Chemistry and Technology
- Surfaces, Coatings and Films
- Materials Chemistry