Abstract
The compact difference of two composition operators on the Bergman spaces over the unit disc is characterized in [11] in terms of certain cancellation property of the inducing maps at every "bad" boundary points, which make each single composition operator not to be compact. In this paper, we completely characterize the compactness of a linear combination of three composition operators on the Bergman space. As one consequence of this characterization, we show that there is no cancellation property for the compactness of double difference of composition operators. More precisely, we show that if ϕi are distinct and none of Cϕi is compact, then (Cϕ1-Cϕ2)-(Cϕ3-Cϕ1) is compact if and only if both (Cϕ1-Cϕ2) and (Cϕ3-Cϕ1) are compact.
Original language | English |
---|---|
Pages (from-to) | 1174-1182 |
Number of pages | 9 |
Journal | Journal of Mathematical Analysis and Applications |
Volume | 432 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2015 Dec 15 |
Bibliographical note
Publisher Copyright:© 2015 Elsevier Inc..
Keywords
- Compactness
- Difference of composition operators
- Linear combination
ASJC Scopus subject areas
- Analysis
- Applied Mathematics