Cancer therapeutics based on diverse energy sources

Subin Son, Jungryun Kim, Jaewon Kim, Byungkook Kim, Jieun Lee, Yuri Kim, Mingle Li, Heemin Kang, Jong Seung Kim

Research output: Contribution to journalReview articlepeer-review

28 Citations (Scopus)

Abstract

Light-based phototherapy has been developed for cancer treatment owing to its non-invasiveness and spatiotemporal control. Despite the unique merits of phototherapy, one critical disadvantage of light is its limited penetration depth, which restricts its application in cancer treatment. Although many researchers have developed various strategies to deliver light into deep-seated tumors with two-photon and near-infrared light irradiation, phototherapy encounters the peculiar limitations of light. In addition, high oxygen dependency is another limitation of photodynamic therapy to treat hypoxic tumors. To overcome the drawbacks of conventional treatments, various energy sources have been developed for cancer treatment. Generally, most energy sources, such as ultrasound, chemiluminescence, radiation, microwave, electricity, and magnetic field, are relatively free from the restraint of penetration depth. Combining other strategies or therapies with other energy-source-based therapies improves the strength and compensates for the weakness. This tutorial review focuses on recent advances in the diverse energy sources utilized in cancer treatment and their future perspectives.

Original languageEnglish
Pages (from-to)8201-8215
Number of pages15
JournalChemical Society Reviews
Volume51
Issue number19
DOIs
Publication statusPublished - 2022 Sept 7

Bibliographical note

Funding Information:
This work was supported by the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (CRI project no. 2018R1A3B1052702 J. S. K. and 2020R1C1C1011038 H. K.) and the Korea University Graduate School Junior Fellow Research Grant of J. K. We also acknowledge support from the Brain Pool Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (Grant No. 2020H1D3A1A02080172, M. L.).

Publisher Copyright:
© 2022 The Royal Society of Chemistry.

ASJC Scopus subject areas

  • Chemistry(all)

Fingerprint

Dive into the research topics of 'Cancer therapeutics based on diverse energy sources'. Together they form a unique fingerprint.

Cite this