TY - JOUR
T1 - Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg 2(dobpdc)
AU - McDonald, Thomas M.
AU - Lee, Woo Ram
AU - Mason, Jarad A.
AU - Wiers, Brian M.
AU - Hong, Chang Seop
AU - Long, Jeffrey R.
PY - 2012/4/25
Y1 - 2012/4/25
N2 - Two new metal-organic frameworks, M 2(dobpdc) (M = Zn (1), Mg (2); dobpdc 4- = 4,4′-dioxido-3,3′-biphenyldicarboxylate), adopting an expanded MOF-74 structure type, were synthesized via solvothermal and microwave methods. Coordinatively unsaturated Mg 2+ cations lining the 18.4-Å-diameter channels of 2 were functionalized with N,N′-dimethylethylenediamine (mmen) to afford Mg 2(dobpdc)(mmen) 1.6(H 2O) 0.4 (mmen-Mg 2(dobpdc)). This compound displays an exceptional capacity for CO 2 adsorption at low pressures, taking up 2.0 mmol/g (8.1 wt %) at 0.39 mbar and 25 °C, conditions relevant to removal of CO 2 from air, and 3.14 mmol/g (12.1 wt %) at 0.15 bar and 40 °C, conditions relevant to CO 2 capture from flue gas. Dynamic gas adsorption/desorption cycling experiments demonstrate that mmen-Mg 2(dobpdc) can be regenerated upon repeated exposures to simulated air and flue gas mixtures, with cycling capacities of 1.05 mmol/g (4.4 wt %) after 1 h of exposure to flowing 390 ppm CO 2 in simulated air at 25 °C and 2.52 mmol/g (9.9 wt %) after 15 min of exposure to flowing 15% CO 2 in N 2 at 40 °C. The purity of the CO 2 removed from dry air and flue gas in these processes was estimated to be 96% and 98%, respectively. As a flue gas adsorbent, the regeneration energy was estimated through differential scanning calorimetry experiments to be 2.34 MJ/kg CO 2 adsorbed. Overall, the performance characteristics of mmen-Mg 2(dobpdc) indicate it to be an exceptional new adsorbent for CO 2 capture, comparing favorably with both amine-grafted silicas and aqueous amine solutions.
AB - Two new metal-organic frameworks, M 2(dobpdc) (M = Zn (1), Mg (2); dobpdc 4- = 4,4′-dioxido-3,3′-biphenyldicarboxylate), adopting an expanded MOF-74 structure type, were synthesized via solvothermal and microwave methods. Coordinatively unsaturated Mg 2+ cations lining the 18.4-Å-diameter channels of 2 were functionalized with N,N′-dimethylethylenediamine (mmen) to afford Mg 2(dobpdc)(mmen) 1.6(H 2O) 0.4 (mmen-Mg 2(dobpdc)). This compound displays an exceptional capacity for CO 2 adsorption at low pressures, taking up 2.0 mmol/g (8.1 wt %) at 0.39 mbar and 25 °C, conditions relevant to removal of CO 2 from air, and 3.14 mmol/g (12.1 wt %) at 0.15 bar and 40 °C, conditions relevant to CO 2 capture from flue gas. Dynamic gas adsorption/desorption cycling experiments demonstrate that mmen-Mg 2(dobpdc) can be regenerated upon repeated exposures to simulated air and flue gas mixtures, with cycling capacities of 1.05 mmol/g (4.4 wt %) after 1 h of exposure to flowing 390 ppm CO 2 in simulated air at 25 °C and 2.52 mmol/g (9.9 wt %) after 15 min of exposure to flowing 15% CO 2 in N 2 at 40 °C. The purity of the CO 2 removed from dry air and flue gas in these processes was estimated to be 96% and 98%, respectively. As a flue gas adsorbent, the regeneration energy was estimated through differential scanning calorimetry experiments to be 2.34 MJ/kg CO 2 adsorbed. Overall, the performance characteristics of mmen-Mg 2(dobpdc) indicate it to be an exceptional new adsorbent for CO 2 capture, comparing favorably with both amine-grafted silicas and aqueous amine solutions.
UR - http://www.scopus.com/inward/record.url?scp=84860337158&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84860337158&partnerID=8YFLogxK
U2 - 10.1021/ja300034j
DO - 10.1021/ja300034j
M3 - Article
C2 - 22475173
AN - SCOPUS:84860337158
SN - 0002-7863
VL - 134
SP - 7056
EP - 7065
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 16
ER -