Cerebral hemodynamic responses to seizure in the mouse brain: Simultaneous near-infrared spectroscopy-electroencephalography study

Seungduk Lee, Mina Lee, Dalkwon Koh, Beop Min Kim, Jee Hyun Choi

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

We applied near-infrared spectroscopy (NIRS) and electroencephalography (EEG) simultaneously on the mouse brain and investigated the hemodynamic response to epileptic episodes under pharmacologically driven seizure. (-butyrolactone (GBL) and 4-aminopyridine (4-AP) were applied to induce absence and tonicclonic seizures, respectively. The epileptic episodes were identified from the single-channel EEG, and the corresponding hemodynamic changes in different regions of the brain were characterized by multichannel frequency-domain NIRS. Our results are the following: (i) the oxyhemoglobin level increases in the case of GBL-treated mice but not 4-AP-treated mice compared to the predrug state; (ii) the dominant response to each absence seizure is a decrease in deoxyhemolobin; (iii) the phase shift between oxy- and deoxyhemoglobin reduces in GBL-treated mice but no 4-AP-treated mice; and (iv) the spatial correlation of hemodynamics increased significantly in 4-APtreated mice but not in GBL-treated mice. Our results shows that spatiotemporal tracking of cerebral hemodynamics using NIRS can be successfully applied to the mouse brain in conjunction with electrophysiological recording, which will support the study of molecular, cellular, and network origin of neurovascular coupling in vivo.

Original languageEnglish
Article number037010
JournalJournal of biomedical optics
Volume15
Issue number3
DOIs
Publication statusPublished - 2010 May

Keywords

  • Deoxyhemoglobin
  • Electroencephalography
  • Mouse
  • Near-infrared spectroscopy
  • Oxyhemoglobin
  • Seizure

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Cerebral hemodynamic responses to seizure in the mouse brain: Simultaneous near-infrared spectroscopy-electroencephalography study'. Together they form a unique fingerprint.

Cite this