Abstract
While the spin transfer torque magnetic memory (STT-MRAM) suffers from its shortcomings such as high write power, slow write operation and reliability issues, spin orbit torque magnetic random access memory (SOT-MRAM) can offer relatively faster write operation with low power based on giant spin hall effect. Although SOT-MRAM provides low power write operation, to meet the power level of current embedded memories, significant reduction of write power is highly required. In this paper, we present a low power write technique for SOT-MRAM. In order to prevent redundant write operation, read-compare-write operation is adopted. As a result, only the SOT cells having different data are written, and write power is saved in the cells with the same data. For further optimization, bitline switching scheme is used to reduce bitline and source line swing in write operation. The negative bitline scheme is also exploited by re-cycling the charge from read operation to increase write current. Simulation results using 65nm CMOS technology show that up to 40.1 % of write energy can be saved compared to the conventional unnecessary write avoidance approach.
Original language | English |
---|---|
Title of host publication | 2018 IEEE International Symposium on Circuits and Systems, ISCAS 2018 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9781538648810 |
DOIs | |
Publication status | Published - 2018 Apr 26 |
Event | 2018 IEEE International Symposium on Circuits and Systems, ISCAS 2018 - Florence, Italy Duration: 2018 May 27 → 2018 May 30 |
Publication series
Name | Proceedings - IEEE International Symposium on Circuits and Systems |
---|---|
Volume | 2018-May |
ISSN (Print) | 0271-4310 |
Other
Other | 2018 IEEE International Symposium on Circuits and Systems, ISCAS 2018 |
---|---|
Country/Territory | Italy |
City | Florence |
Period | 18/5/27 → 18/5/30 |
Bibliographical note
Funding Information:This work was supported by the National Research Foundation of Korea grant funded by the Korea government (NRF-2016 R1A2B4015329 and NRF-2015M3D1A1070465), and the Information Technology Research and Development Program of Korea Evaluation Institute of Industrial Technology [10052716, Design technology development of ultralow voltage operating circuit and IP for smart sensor SoC]
Publisher Copyright:
© 2018 IEEE.
Keywords
- SOT-MRAM
- spin-orbit torque (SOT)
- write power reduction
ASJC Scopus subject areas
- Electrical and Electronic Engineering