Abstract
A brain-computer interface (BCI) provides a direct communication pathway between user and external devices. EEG-based motor imagery paradigm is widely used in non-invasive BCI to obtain encoded signals contained user intention of movement execution. However, EEG has intricate and non-stationary properties resulting in insufficient decoding performance. By imagining numerous movements of a singlearm, decoding performance can be improved without artificial command matching. In this study, we collected intuitive EEG data contained the nine different types of movements of a single-arm from 9 subjects. We propose an end-to-end role assigned convolutional neural network (ERA-CNN) which considers discriminative features of each upper limb region by adopting the principle of a hierarchical CNN architecture. The proposed model outperforms previous methods on 3-class, 5-class and two different types of 7-class classification tasks. Hence, we demonstrate the possibility of decoding user intention by using only EEG signals with robust performance using the ERA-CNN.
Original language | English |
---|---|
Title of host publication | 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1359-1363 |
Number of pages | 5 |
ISBN (Electronic) | 9781509066315 |
DOIs | |
Publication status | Published - 2020 May |
Event | 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, Spain Duration: 2020 May 4 → 2020 May 8 |
Publication series
Name | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
---|---|
Volume | 2020-May |
ISSN (Print) | 1520-6149 |
Conference
Conference | 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 |
---|---|
Country/Territory | Spain |
City | Barcelona |
Period | 20/5/4 → 20/5/8 |
Bibliographical note
Funding Information:This work was partly supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (No. 2017-0-00432, Development of Non-Invasive Integrated BCI SW Platform to Control Home Appliances and External Devices by User’s Thought via AR/VR Interface) and partly funded by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (No. 2017-0-00451, Development of BCI based Brain and Cognitive Computing Technology for Recognizing User’s Intentions using Deep Learning).
Publisher Copyright:
© 2020 IEEE.
Keywords
- Brain-computer interface (BCI)
- Convolutional Neural Network (CNN)
- Electroencephalogram (EEG)
- Motor imagery
ASJC Scopus subject areas
- Software
- Signal Processing
- Electrical and Electronic Engineering