Co-adaptive calibration to improve BCI efficiency

Carmen Vidaurre, Claudia Sannelli, Klaus Robert Müller, Benjamin Blankertz

    Research output: Contribution to journalArticlepeer-review

    143 Citations (Scopus)

    Abstract

    All brain-computer interface (BCI) groups that have published results of studies involving a large number of users performing BCI control based on the voluntary modulation of sensorimotor rhythms (SMR) report that BCI control could not be achieved by a non-negligible number of subjects (estimated 20% to 25%). This failure of the BCI system to read the intention of the user is one of the greatest problems and challenges in BCI research. There are two main causes for this problem in SMR-based BCI systems: either no idle SMR is observed over motor areas of the user, or this idle rhythm is not modulated during motor imagery, resulting in a classification performance lower than 70% (criterion level) that renders the control of a BCI application (like a speller) difficult or impossible. Previously, we introduced the concept of machine learning based co-adaptive calibration, which provided substantially improved performance for a variety of users. Here, we use a similar approach and investigate to what extent co-adaptive learning enables significant BCI control for completely novice users, as well as for those who could not achieve control with a conventional SMR-based BCI.

    Original languageEnglish
    Article number025009
    JournalJournal of Neural Engineering
    Volume8
    Issue number2
    DOIs
    Publication statusPublished - 2011 Apr

    ASJC Scopus subject areas

    • Biomedical Engineering
    • Cellular and Molecular Neuroscience

    Fingerprint

    Dive into the research topics of 'Co-adaptive calibration to improve BCI efficiency'. Together they form a unique fingerprint.

    Cite this