Coagulation-Inspired Direct Fibrinogen Assay Using Plasmonic Nanoparticles Functionalized with Red Blood Cell Membranes

Insu Kim, Dongtak Lee, Sang Won Lee, Jeong Hoon Lee, Gyudo Lee, Dae Sung Yoon

    Research output: Contribution to journalArticlepeer-review

    34 Citations (Scopus)

    Abstract

    The fast measurement of fibrinogen is essential in evaluating life-threatening sepsis and cardiovascular diseases. Here, we aim to utilize biomimetic plasmonic Au nanoparticles using red blood cell membranes (RBCM-AuNPs) and demonstrate nanoscale coagulation-inspired fibrinogen detection via cross-linking between RBCM-AuNPs. The proposed biomimetic RBCM-AuNPs are highly suitable for fibrinogen detection because hemagglutination, occurring in the presence of fibrinogen, induces a shift in the localized surface plasmon resonance of the NPs. Specifically, when the two ends of the fibrinogen protein are bound to receptors on separate RBCM-AuNPs, cross-linking of the RBCM-AuNPs occurs, yielding a corresponding plasmon shift within 10 min. This coagulation-inspired fibrinogen detection method, with a low sample volume, high selectivity, and high speed, could facilitate the diagnosis of sepsis and cardiovascular diseases.

    Original languageEnglish
    Pages (from-to)6386-6394
    Number of pages9
    JournalACS nano
    Volume15
    Issue number4
    DOIs
    Publication statusPublished - 2021 Apr 27

    Bibliographical note

    Funding Information:
    This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIP) (Grant No. NRF-2018M3C1B7020722, NRF-2019R1A2B5B01070617, NRF-2020R1A2C2102262, and NRF-2020R1A6A3A01096477). This study was also supported by the BK21 FOUR (Fostering Outstanding Universities for Research). J. H. Lee was supported by a research grant from Kwangwoon University in 2021.

    Publisher Copyright:
    © 2021 American Chemical Society.

    Keywords

    • cardiovascular disease
    • coagulation-inspired
    • integrin αβ
    • localized surface plasmon resonance
    • red blood cell membrane

    ASJC Scopus subject areas

    • General Materials Science
    • General Engineering
    • General Physics and Astronomy

    Fingerprint

    Dive into the research topics of 'Coagulation-Inspired Direct Fibrinogen Assay Using Plasmonic Nanoparticles Functionalized with Red Blood Cell Membranes'. Together they form a unique fingerprint.

    Cite this