Abstract
The fast measurement of fibrinogen is essential in evaluating life-threatening sepsis and cardiovascular diseases. Here, we aim to utilize biomimetic plasmonic Au nanoparticles using red blood cell membranes (RBCM-AuNPs) and demonstrate nanoscale coagulation-inspired fibrinogen detection via cross-linking between RBCM-AuNPs. The proposed biomimetic RBCM-AuNPs are highly suitable for fibrinogen detection because hemagglutination, occurring in the presence of fibrinogen, induces a shift in the localized surface plasmon resonance of the NPs. Specifically, when the two ends of the fibrinogen protein are bound to receptors on separate RBCM-AuNPs, cross-linking of the RBCM-AuNPs occurs, yielding a corresponding plasmon shift within 10 min. This coagulation-inspired fibrinogen detection method, with a low sample volume, high selectivity, and high speed, could facilitate the diagnosis of sepsis and cardiovascular diseases.
Original language | English |
---|---|
Pages (from-to) | 6386-6394 |
Number of pages | 9 |
Journal | ACS nano |
Volume | 15 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2021 Apr 27 |
Bibliographical note
Funding Information:This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIP) (Grant No. NRF-2018M3C1B7020722, NRF-2019R1A2B5B01070617, NRF-2020R1A2C2102262, and NRF-2020R1A6A3A01096477). This study was also supported by the BK21 FOUR (Fostering Outstanding Universities for Research). J. H. Lee was supported by a research grant from Kwangwoon University in 2021.
Publisher Copyright:
© 2021 American Chemical Society.
Keywords
- cardiovascular disease
- coagulation-inspired
- integrin αβ
- localized surface plasmon resonance
- red blood cell membrane
ASJC Scopus subject areas
- General Materials Science
- General Engineering
- General Physics and Astronomy