Abstract
Multi-modal structural MRI has been widely used for presurgical glioma grading for treatment planning. Despite providing complementary information, a complete set of high-resolution multi-modality data is costly and often impossible to acquire in clinical settings (although T1 MRI is more commonly acquired). To leverage more comprehensive multimodality information for better glioma grading instead of doing so with T1 MRI data only, we introduce a three-dimensional common feature learning-based context-aware generative adversarial network (CoCa-GAN) for multimodal MRI data synthesis based on T1 MRI and use the comprehensive features from a common feature space to achieve a clinically feasible glioma grading with limited imaging modality. The common feature space is first learned by simultaneously utilizing four MRI modalities with the adversarial learning and context-aware learning, where the inter-modality relationships and lesion-specific features can be explicitly encoded. Then, the domain (modality) invariant information represented in the common space is leveraged to synthesize the missing modalities for a joint prediction of glioma grades (high- vs. low-grade). Furthermore, Gradient-weighted Class Activation Mapping (GradCAM) is utilized to provide interpretability to the factors that contribute to the grading, for potential clinical usage. Results demonstrate that the common feature learning achieves more accurate glioma grading than simply using single modality data and leads to a comparable performance to that with complete modalities as inputs. Our method offers a highly feasible solution to clinical practice where multi-modality data is often unavailable.
Original language | English |
---|---|
Title of host publication | Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings |
Editors | Dinggang Shen, Pew-Thian Yap, Tianming Liu, Terry M. Peters, Ali Khan, Lawrence H. Staib, Caroline Essert, Sean Zhou |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 155-163 |
Number of pages | 9 |
ISBN (Print) | 9783030322472 |
DOIs | |
Publication status | Published - 2019 |
Event | 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 - Shenzhen, China Duration: 2019 Oct 13 → 2019 Oct 17 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 11766 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 |
---|---|
Country/Territory | China |
City | Shenzhen |
Period | 19/10/13 → 19/10/17 |
Bibliographical note
Funding Information:Acknowledgements. ZJ, HZ, and DS were supported in part by an NIH grant AG041721. PH and DL were supported in part by the Taishan Scholars Project of Shandong Province (Tsqn20161023) and the Primary Research and Development Plan of Shandong Province (No. 2018GGX101018).
Publisher Copyright:
© 2019, Springer Nature Switzerland AG.
Keywords
- Generative adversarial network
- Glioma grading
- Image synthesis
- MRI
ASJC Scopus subject areas
- Theoretical Computer Science
- General Computer Science