TY - GEN
T1 - Combining features for BCI
AU - Dornhege, Guido
AU - Blankertz, Benjamin
AU - Curio, Gabriel
AU - Müller, Klaus Robert
PY - 2003
Y1 - 2003
N2 - Recently, interest is growing to develop an effective communication interface connecting the human brain to a computer, the 'Brain-Computer Interface' (BCI). One motivation of BCI research is to provide a new communication channel substituting normal motor output in patients with severe neuromuscular disabilities. In the last decade, various neuro-physiological cortical processes, such as slow potential shifts, movement related potentials (MRPs) or event-related desynchronization (ERD) of spontaneous EEG rhythms, were shown to be suitable for BCI, and, consequently, different independent approaches of extracting BCI-relevant EEG-features for single-trial analysis are under investigation. Here, we present and systematically compare several concepts for combining such EEG-features to improve the single-trial classification. Feature combinations are evaluated on movement imagination experiments with 3 subjects where EEG-features are based on either MRPs or ERD, or both. Those combination methods that incorporate the assumption that the single EEG-features are physiologically mutually independent outperform the plain method of 'adding' evidence where the single-feature vectors are simply concatenated. These results strengthen the hypothesis that MRP and ERD reflect at least partially independent aspects of cortical processes and open a new perspective to boost BCI effectiveness.
AB - Recently, interest is growing to develop an effective communication interface connecting the human brain to a computer, the 'Brain-Computer Interface' (BCI). One motivation of BCI research is to provide a new communication channel substituting normal motor output in patients with severe neuromuscular disabilities. In the last decade, various neuro-physiological cortical processes, such as slow potential shifts, movement related potentials (MRPs) or event-related desynchronization (ERD) of spontaneous EEG rhythms, were shown to be suitable for BCI, and, consequently, different independent approaches of extracting BCI-relevant EEG-features for single-trial analysis are under investigation. Here, we present and systematically compare several concepts for combining such EEG-features to improve the single-trial classification. Feature combinations are evaluated on movement imagination experiments with 3 subjects where EEG-features are based on either MRPs or ERD, or both. Those combination methods that incorporate the assumption that the single EEG-features are physiologically mutually independent outperform the plain method of 'adding' evidence where the single-feature vectors are simply concatenated. These results strengthen the hypothesis that MRP and ERD reflect at least partially independent aspects of cortical processes and open a new perspective to boost BCI effectiveness.
UR - http://www.scopus.com/inward/record.url?scp=84898967413&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84898967413&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84898967413
SN - 0262025507
SN - 9780262025508
T3 - Advances in Neural Information Processing Systems
BT - Advances in Neural Information Processing Systems 15 - Proceedings of the 2002 Conference, NIPS 2002
PB - Neural information processing systems foundation
T2 - 16th Annual Neural Information Processing Systems Conference, NIPS 2002
Y2 - 9 December 2002 through 14 December 2002
ER -