Comparative Study of Olefin Production from CO and CO2Using Na- And K-Promoted Zinc Ferrite

Sunkyu Yang, Hee Joon Chun, Sungwoo Lee, Seung Ju Han, Kwan Young Lee, Yong Tae Kim

Research output: Contribution to journalArticlepeer-review

44 Citations (Scopus)


Using a zinc ferrite catalyst system, we investigated the effect of sodium and potassium promoters on the concurrent conversion of CO and CO2 to olefins, focusing on the productivity and product distribution. We found that the use of promoters alters the balance between iron oxides and iron carbides in the catalyst, which affects the CO and CO2 conversion. The Na- and K-promoted catalysts facilitated the production of C2-C32 olefins, and a parametric study with 12 feedstock compositions (CO/CO2 = 0.2-5 and H2/(CO + CO2) = 1-3) revealed that the Na/Fe-Zn catalyst exhibited a 6.1-times higher apparent CO consumption rate and 2.7-times higher apparent CO2 consumption rate than the K/Fe-Zn catalyst at 340 °C and 2.0 MPa. At a CO/CO2 ratio of 0.2 and H2/(CO + CO2) ratio of 2, the Na/Fe-Zn catalyst achieved the maximum linear α-olefin yield (17.9%) at 70.3% apparent CO conversion and 26.0% apparent CO2 conversion (58.4% higher than those of the K/Fe-Zn catalyst) over 200 h. The Na/Fe-Zn catalyst activity for apparent CO conversion was more than twice that of the K/Fe-Zn catalyst, and it also exhibited better reactivity in terms of chain growth probability and secondary reactions, such as isomerization and hydrogenation. Characterization experiments revealed that the spent Na/Fe-Zn catalyst contained 43.2% iron carbides (mainly Fe5C2), and these were distributed within 19 nm of the catalyst particle surface. In contrast, the spent K/Fe-Zn catalyst was mostly composed of core-shell-type iron carbides (74.3% Fe5C2 and 21.2% Fe7C3) surrounded by carbonate/carbonyl carbon species. H2O isotherms of the spent catalysts were studied to understand factors affecting CO adsorption and CO2 reactivity, and theoretical calculations were used to probe CO hydrogenation productivity. The reactivity of Na/Fe-Zn toward CO and CO2 was analyzed with respect to the temperature, pressure, weight hourly space velocities, and optimal olefin productivity.

Original languageEnglish
Pages (from-to)10742-10759
Number of pages18
JournalACS Catalysis
Issue number18
Publication statusPublished - 2020 Sept 18

Bibliographical note

Funding Information:
This work was supported by the “Next Generation Carbon Upcycling Project” (NRF-2017M1A2A2043110) through the National Research Foundation (NRF) funded by the Ministry of Science and ICT, Republic of Korea.

Publisher Copyright:
© 2020 American Chemical Society.


  • CO
  • CO
  • alkali metals
  • carbon capture and utilization
  • olefin production
  • zinc ferrite

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry


Dive into the research topics of 'Comparative Study of Olefin Production from CO and CO2Using Na- And K-Promoted Zinc Ferrite'. Together they form a unique fingerprint.

Cite this