Comparison of fracture strain based ductile failure simulation with experimental results

Nak Hyun Kim, Chang Sik Oh, Yun Jae Kim, Kee Bong Yoon, Young Hwa Ma

Research output: Contribution to journalArticlepeer-review

80 Citations (Scopus)


This paper provides experimental validation of the approach for simulating ductile failure using finite element methods, recently proposed by the authors. The proposed method is based on a phenomenological stress-modified fracture strain model. Incremental damage is defined by the ratio of the plastic strain increment to the fracture strain, and total damage is calculated using linear summation. When the accumulated damage becomes unity, all stress components at the finite element gauss point are reduced to a small value to simulate progressive failure. The proposed method is validated against four experimental data sets of cracked specimens made of three different materials. Despite the simplicity of the proposed method, the simulated results agree well with experimental data for all cases considered, providing sufficient confidence in the use of the proposed method to simulate ductile failure.

Original languageEnglish
Pages (from-to)434-447
Number of pages14
JournalInternational Journal of Pressure Vessels and Piping
Issue number10
Publication statusPublished - 2011 Oct

Bibliographical note

Funding Information:
This research is supported by Engineering Research Center (No. 2009-0063170), funded by Korea Science & Engineering Foundation and by the New & Renewable Energy of the Korea Institute of Energy Technology Evaluation and Planning (No. 20101020300710 ) grant funded by the Korea government Ministry of Knowledge Economy.


  • Ductile fracture simulation
  • Experimental validation
  • Finite element analysis
  • Stress-modified fracture strain

ASJC Scopus subject areas

  • General Materials Science
  • Mechanics of Materials
  • Mechanical Engineering


Dive into the research topics of 'Comparison of fracture strain based ductile failure simulation with experimental results'. Together they form a unique fingerprint.

Cite this