Abstract
The noise power spectrum (NPS) is one of the most general methods for measuring the noise amplitude and the quality of an image acquired from a uniform radiation field. The purpose of this study was to compare different NPS methodologies by using megavoltage X-ray energies. The NPS evaluation methods in diagnostic radiation were applied to therapy using the International Electrotechnical Commission standard (IEC 62220-1). In order to measure the region of interest (ROI) of the NPS, we used the following five factors: the overlapping impact, the non-overlapping impact, the penumbra, the flatness and different ROI sizes. We used NPS from four different types of detectors, the CR-IP (computed radiography image plate: photo-stimulable phosphor screen), the CR-IP-lead (hexalon lead screen), the CR-IP-back [lanex TM fast back screen: {terbium-doped gadolinium oxysulfide granular phosphor screen (Gd 2O 2S:Tb,133 mg/cm 2)} + 1-mm-thick copper plate and the CR-IP-front (lanex TM fast front screen). A Kodak 2000 RT photo-stimulable phosphor-based computed radiographic (CR) system showed that the normalized noise power spectrum (NNPS) curve gradually decreased, in compliance with increasing spatial resolution. In addition, each detector showed a different reactivity of the NPS to megavoltage. The results of multivariate analysis of variance (MANOVA) test (methods × detectors) revealed significant main effects of the methods [F(1, 4) = 53.543, P = 0.001 and of the detectors [F(1, 4) = 17.556, P = 0.001]. The present study revealed that various factors could be employed to produce megavoltage imaging (MVI) of the NPS and as a baseline standard for NPS control in MVI.
Original language | English |
---|---|
Pages (from-to) | 129-136 |
Number of pages | 8 |
Journal | Journal of the Korean Physical Society |
Volume | 60 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2012 Jan |
Keywords
- Megavoltage X-ray imaging (MVI)
- Modulation transfer function (MTF)
- Noise power spectrum (NPS)
ASJC Scopus subject areas
- Physics and Astronomy(all)