Abstract
Purpose K-MASTER project is a Korean national precision medicine platform that screened actionable mutations by analyzing next-generation sequencing (NGS) of solid tumor patients. We compared gene analyses between NGS panel from the K-MASTER project and orthogonal methods. Materials and Methods Colorectal, breast, non–small cell lung, and gastric cancer patients were included. We compared NGS results from K-MASTER projects with those of non-NGS orthogonal methods (KRAS, NRAS, and BRAF mutations in colorectal cancer [CRC]; epidermal growth factor receptor [EGFR], anaplastic lymphoma kinase [ALK] fusion, and reactive oxygen species 1 [ROS1] fusion in non–small cell lung cancer [NSCLC], and Erb-B2 receptor tyrosine kinase 2 (ERBB2) positivity in breast and gastric cancers). Results In the CRC cohort (n=225), the sensitivity and specificity of NGS were 87.4% and 79.3% (KRAS); 88.9% and 98.9% (NRAS); and 77.8% and 100.0% (BRAF), respectively. In the NSCLC cohort (n=109), the sensitivity and specificity of NGS for EGFR were 86.2% and 97.5%, respectively. The concordance rate for ALK fusion was 100%, but ROS1 fusion was positive in only one of three cases that were positive in orthogonal tests. In the breast cancer cohort (n=260), ERBB2 amplification was detected in 45 by NGS. Compared with orthogonal methods that integrated immunohistochemistry and in situ hybridization, sensitivity and specificity were 53.7% and 99.4%, respectively. In the gastric cancer cohort (n=64), ERBB2 amplification was detected in six by NGS. Compared with orthogonal methods, sensitivity and specificity were 62.5% and 98.2%, respectively. Conclusion The results of the K-MASTER NGS panel and orthogonal methods showed a different degree of agreement for each genetic alteration, but generally showed a high agreement rate.
Original language | English |
---|---|
Pages (from-to) | 30-39 |
Number of pages | 10 |
Journal | Cancer Research and Treatment |
Volume | 54 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2022 Jan |
Bibliographical note
Funding Information:This study was supported by a Korea University Grant (K1625571). The K-MASTER research was supported by a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI17C2206). We are deeply grateful to the patients and their families who participated in this study. We also thank the researchers and research coordinators nationwide for their active participation.
Publisher Copyright:
Copyright © 2022 by the Korean Cancer Association.
Keywords
- High-throughput nucleotide sequencing
- Molecular
- Pathology
- Precision medicine
- Targetable gene alteration
ASJC Scopus subject areas
- Oncology
- Cancer Research