Abstract
In this study, heat transfer characteristics of single-phase Water/Lithium Bromide (H2O/LiBr) solution in a plate heat exchanger (PHE) is evaluated for absorption chiller applications. The plate heat exchanger is arranged with single-pass and counter flow, and the chevron angle of corrugated plate is a high theta of 78.5°. The H2O/LiBr solution is used as working fluid with wide mass concentration ranging between 52.40% and 64.92%, Reynolds number ranging between 27.29 and 255.1 and Prandtl number ranging between 4.59 and 19.26. All of experiments are conducted within ±10% energy balance error range. It is found that the convective heat transfer coefficients range from 0.68 kW/m2·K to 2.92 kW/m2·K. Based on the experimental data, empirical Nusselt number correlation of the H2O/LiBr solution in the 78.5° plate heat exchanger is developed within ±20% error range. The Nusselt number correlation of the present study is applicable to predict the heat transfer characteristics of the H2O/LiBr solution with a wide range of LiBr concentration for triple effect absorption chiller applications.
Original language | English |
---|---|
Pages (from-to) | 852-860 |
Number of pages | 9 |
Journal | Energy |
Volume | 172 |
DOIs | |
Publication status | Published - 2019 Apr 1 |
Keywords
- Absorption cycle
- HO/LiBr solution
- Heat transfer coefficient
- LiBr concentration
- Plate heat exchanger
ASJC Scopus subject areas
- Civil and Structural Engineering
- Building and Construction
- Modelling and Simulation
- Renewable Energy, Sustainability and the Environment
- Fuel Technology
- Energy Engineering and Power Technology
- Pollution
- Energy(all)
- Mechanical Engineering
- Industrial and Manufacturing Engineering
- Management, Monitoring, Policy and Law
- Electrical and Electronic Engineering