TY - JOUR
T1 - Complete Genome Sequence of Paenibacillus sp. CAA11
T2 - A Promising Microbial Host for Lignocellulosic Biorefinery with Consolidated Processing
AU - Gong, Gyeongtaek
AU - Oh, Hyun Ju
AU - Cho, Sukhyeong
AU - Kim, Seil
AU - Oh, Min Kyu
AU - Um, Youngsoon
AU - Lee, Sun Mi
N1 - Funding Information:
Acknowledgements This research was supported by C1 Gas Refinery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT (Information & Communication Technology) & Future Planning (2016M3D3A1A01913249). The authors also appreciate further support by Korea Institute of Science and Technology (KIST) Institutional Program (2E28290).
Funding Information:
This research was supported by C1 Gas Refinery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT (Information & Communication Technology) & Future Planning (2016M3D3A1A01913249). The authors also appreciate further support by Korea Institute of Science and Technology (KIST) Institutional Program (2E28290).
Publisher Copyright:
© 2019, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2019/6/15
Y1 - 2019/6/15
N2 - Several bioprocessing technologies, such as separate hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF), and consolidated bioprocessing (CBP), have been highlighted to produce bio-based fuels and chemicals from lignocellulosic biomass. Successful CBP, an efficient and economical lignocellulosic biorefinery process compared with other processes, requires microorganisms with sufficient cellulolytic activity and biofuel/chemical-producing ability. Here, we report the complete genome of Paenibacillus sp. CAA11, a newly isolated promising microbial host for CBP-producing ethanol and organic acids from cellulose. The genome of Paenibacillus sp. CAA11 comprises one 4,888,410 bp chromosome with a G + C content of 48.68% containing 4418 protein-coding genes, 102 tRNA genes, and 39 rRNA genes. The functionally active cellulase, encoded by CAA_GH5 was identified to belong to glycosyl hydrolase family 5 (GH5) and consisted of a catalytic domain and a cellulose-binding domain 3 (CBM3). When cellulolytic activity of CAA_GH5 was assayed through Congo red method by measuring the size of halo zone, the recombinant Bacillus subtilis RIK1285 expressing CAA_GH5 showed a comparable cellulolytic activity to B. subtilis RIK1285 expressing Cel5, a previously verified powerful bacterial cellulase. This study demonstrates the potential of Paenibacillus sp. CAA11 as a CBP-enabling microbe for cost-effective biofuels/chemicals production from lignocellulosic biomass.
AB - Several bioprocessing technologies, such as separate hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF), and consolidated bioprocessing (CBP), have been highlighted to produce bio-based fuels and chemicals from lignocellulosic biomass. Successful CBP, an efficient and economical lignocellulosic biorefinery process compared with other processes, requires microorganisms with sufficient cellulolytic activity and biofuel/chemical-producing ability. Here, we report the complete genome of Paenibacillus sp. CAA11, a newly isolated promising microbial host for CBP-producing ethanol and organic acids from cellulose. The genome of Paenibacillus sp. CAA11 comprises one 4,888,410 bp chromosome with a G + C content of 48.68% containing 4418 protein-coding genes, 102 tRNA genes, and 39 rRNA genes. The functionally active cellulase, encoded by CAA_GH5 was identified to belong to glycosyl hydrolase family 5 (GH5) and consisted of a catalytic domain and a cellulose-binding domain 3 (CBM3). When cellulolytic activity of CAA_GH5 was assayed through Congo red method by measuring the size of halo zone, the recombinant Bacillus subtilis RIK1285 expressing CAA_GH5 showed a comparable cellulolytic activity to B. subtilis RIK1285 expressing Cel5, a previously verified powerful bacterial cellulase. This study demonstrates the potential of Paenibacillus sp. CAA11 as a CBP-enabling microbe for cost-effective biofuels/chemicals production from lignocellulosic biomass.
UR - http://www.scopus.com/inward/record.url?scp=85064571275&partnerID=8YFLogxK
U2 - 10.1007/s00284-019-01685-w
DO - 10.1007/s00284-019-01685-w
M3 - Article
C2 - 30993398
AN - SCOPUS:85064571275
SN - 0343-8651
VL - 76
SP - 732
EP - 737
JO - Current Microbiology
JF - Current Microbiology
IS - 6
ER -