Abstract
As a paradigm to recover the sparse signal from a small set of linear measurements, compressed sensing (CS) has stimulated a great deal of interest in recent years. In order to apply the CS techniques to wireless communication systems, there are a number of things to know and also several issues to be considered. However, it is not easy to grasp simple and easy answers to the issues raised while carrying out research on CS. The main purpose of this paper is to provide essential knowledge and useful tips and tricks that wireless communication researchers need to know when designing CS-based wireless systems. First, we present an overview of the CS technique, including basic setup, sparse recovery algorithm, and performance guarantee. Then, we describe three distinct subproblems of CS, viz., sparse estimation, support identification, and sparse detection, with various wireless communication applications. We also address main issues encountered in the design of CS-based wireless communication systems. These include potentials and limitations of CS techniques, useful tips that one should be aware of, subtle points that one should pay attention to, and some prior knowledge to achieve better performance. Our hope is that this paper will be a useful guide for wireless communication researchers and even non-experts to get the gist of CS techniques.
Original language | English |
---|---|
Article number | 7842611 |
Pages (from-to) | 1527-1550 |
Number of pages | 24 |
Journal | IEEE Communications Surveys and Tutorials |
Volume | 19 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2017 Jul 1 |
Bibliographical note
Publisher Copyright:© 1998-2012 IEEE.
Keywords
- Compressed sensing
- greedy algorithm
- l-norm
- performance guarantee
- sparse signal
- underdetermined systems
- wireless communication systems
ASJC Scopus subject areas
- Electrical and Electronic Engineering