TY - JOUR
T1 - Computer-assisted measurement of primary tumor area is prognostic of recurrence-free survival in stage IB melanoma patients
AU - Rosenbaum, Brooke E.
AU - Schafer, Christine N.
AU - Han, Sung Won
AU - Osman, Iman
AU - Zhong, Hua
AU - Brinster, Nooshin
N1 - Publisher Copyright:
© 2017 USCAP, Inc All rights reserved.
PY - 2017/10/1
Y1 - 2017/10/1
N2 - Current staging guidelines are insufficient to predict which patients with thin primary melanoma are at high risk of recurrence. Computer-assisted image analysis may allow for more practical and objective histopathological analysis of primary tumors than traditional light microscopy. We studied a prospective cohort of stage IB melanoma patients treated at NYU Langone Medical Center from 2002 to 2014. Primary tumor width, manual area, digital area, and conformation were evaluated in a patient subset via computer-assisted image analysis. The associations between histologic variables and survival were evaluated using Cox proportional hazards model. Logistic regressions were used to build a classifier with clinicopathological characteristics to predict recurrence status. Of the 655 patients with stage IB melanoma studied, a subset of 149 patient tumors (63 recurred, 86 did not recur) underwent computer-assisted histopathological analysis. Increasing tumor width (hazard ratios (HR): 1.17, P=0.01) and digital area (HR: 1.08, P<0.01) were significantly associated with worse recurrence-free survival, whereas non-contiguous conformation (HR: 0.57, P=0.05) was significantly associated with better recurrence-free survival. The novel histopathological classifier composed of digital area, conformation, and baseline variables effectively distinguished recurrent cases from non-recurrent cases (AUC: 0.733, 95% confidence interval (CI): 0.647-0.818), compared to the baseline classifier alone (AUC: 0.635, 95% CI: 0.545-0.724). Primary tumor cross-sectional area, width, and conformation measured via computer-assisted analysis may help identify high-risk patients with stage IB melanoma.
AB - Current staging guidelines are insufficient to predict which patients with thin primary melanoma are at high risk of recurrence. Computer-assisted image analysis may allow for more practical and objective histopathological analysis of primary tumors than traditional light microscopy. We studied a prospective cohort of stage IB melanoma patients treated at NYU Langone Medical Center from 2002 to 2014. Primary tumor width, manual area, digital area, and conformation were evaluated in a patient subset via computer-assisted image analysis. The associations between histologic variables and survival were evaluated using Cox proportional hazards model. Logistic regressions were used to build a classifier with clinicopathological characteristics to predict recurrence status. Of the 655 patients with stage IB melanoma studied, a subset of 149 patient tumors (63 recurred, 86 did not recur) underwent computer-assisted histopathological analysis. Increasing tumor width (hazard ratios (HR): 1.17, P=0.01) and digital area (HR: 1.08, P<0.01) were significantly associated with worse recurrence-free survival, whereas non-contiguous conformation (HR: 0.57, P=0.05) was significantly associated with better recurrence-free survival. The novel histopathological classifier composed of digital area, conformation, and baseline variables effectively distinguished recurrent cases from non-recurrent cases (AUC: 0.733, 95% confidence interval (CI): 0.647-0.818), compared to the baseline classifier alone (AUC: 0.635, 95% CI: 0.545-0.724). Primary tumor cross-sectional area, width, and conformation measured via computer-assisted analysis may help identify high-risk patients with stage IB melanoma.
UR - http://www.scopus.com/inward/record.url?scp=85030648080&partnerID=8YFLogxK
U2 - 10.1038/modpathol.2017.64
DO - 10.1038/modpathol.2017.64
M3 - Article
C2 - 28731044
AN - SCOPUS:85030648080
SN - 0893-3952
VL - 30
SP - 1402
EP - 1410
JO - Modern Pathology
JF - Modern Pathology
IS - 10
ER -