Constant Acceleration Flow

Dogyun Park, Sojin Lee, Sihyeon Kim, Taehoon Lee, Youngjoon Hong*, Hyunwoo J. Kim*

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

Abstract

Rectified flow and reflow procedures have significantly advanced fast generation by progressively straightening ordinary differential equation (ODE) flows. They operate under the assumption that image and noise pairs, known as couplings, can be approximated by straight trajectories with constant velocity. However, we observe that modeling with constant velocity and using reflow procedures have limitations in accurately learning straight trajectories between pairs, resulting in suboptimal performance in few-step generation. To address these limitations, we introduce Constant Acceleration Flow (CAF), a novel framework based on a simple constant acceleration equation. CAF introduces acceleration as an additional learnable variable, allowing for more expressive and accurate estimation of the ODE flow. Moreover, we propose two techniques to further improve estimation accuracy: initial velocity conditioning for the acceleration model and a reflow process for the initial velocity. Our comprehensive studies on toy datasets, CIFAR-10, and ImageNet 64×64 demonstrate that CAF outperforms state-of-the-art baselines for one-step generation. We also show that CAF dramatically improves few-step coupling preservation and inversion over Rectified flow. Code is available at https://github.com/mlvlab/CAF.

Original languageEnglish
JournalAdvances in Neural Information Processing Systems
Volume37
Publication statusPublished - 2024
Event38th Conference on Neural Information Processing Systems, NeurIPS 2024 - Vancouver, Canada
Duration: 2024 Dec 92024 Dec 15

Bibliographical note

Publisher Copyright:
© 2024 Neural information processing systems foundation. All rights reserved.

ASJC Scopus subject areas

  • Signal Processing
  • Information Systems
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Constant Acceleration Flow'. Together they form a unique fingerprint.

Cite this