Abstract
The major construction and initial-phase operation of a second-generation gravitational-wave detector, KAGRA, has been completed. The entire 3 km detector is installed underground in a mine in order to be isolated from background seismic vibrations on the surface. This allows us to achieve a good sensitivity at low frequencies and high stability of the detector. Bare-bones equipment for the interferometer operation has been installed and the first test run was accomplished in March and April of 2016 with a rather simple configuration. The initial configuration of KAGRA is called iKAGRA. In this paper, we summarize the construction of KAGRA, including a study of the advantages and challenges of building an underground detector, and the operation of the iKAGRA interferometer together with the geophysics interferometer that has been constructed in the same tunnel.
Original language | English |
---|---|
Article number | 013F01 |
Journal | Progress of Theoretical and Experimental Physics |
Volume | 2018 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2018 Jan 1 |
ASJC Scopus subject areas
- Physics and Astronomy(all)
Fingerprint
Dive into the research topics of 'Construction of KAGRA: An underground gravitational-wave observatory'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
In: Progress of Theoretical and Experimental Physics, Vol. 2018, No. 1, 013F01, 01.01.2018.
Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Construction of KAGRA
T2 - An underground gravitational-wave observatory
AU - Akutsu, T.
AU - Ando, M.
AU - Araki, S.
AU - Araya, A.
AU - Arima, T.
AU - Aritomi, N.
AU - Asada, H.
AU - Aso, Y.
AU - Atsuta, S.
AU - Awai, K.
AU - Baiotti, L.
AU - Barton, M. A.
AU - Chen, D.
AU - Cho, K.
AU - Craig, K.
AU - DeSalvo, R.
AU - Doi, K.
AU - Eda, K.
AU - Enomoto, Y.
AU - Flaminio, R.
AU - Fujibayashi, S.
AU - Fujii, Y.
AU - Fujimoto, M. K.
AU - Fukushima, M.
AU - Furuhata, T.
AU - Hagiwara, A.
AU - Haino, S.
AU - Harita, S.
AU - Hasegawa, K.
AU - Hasegawa, M.
AU - Hashino, K.
AU - Hayama, K.
AU - Hirata, N.
AU - Hirose, E.
AU - Ikenoue, B.
AU - Inoue, Y.
AU - Ioka, K.
AU - Ishizaki, H.
AU - Itoh, Y.
AU - Jia, D.
AU - Kagawa, T.
AU - Kaji, T.
AU - Kajita, T.
AU - Kakizaki, M.
AU - Kakuhata, H.
AU - Kamiizumi, M.
AU - Kanbara, S.
AU - Kanda, N.
AU - Kanemura, S.
AU - Kaneyama, M.
AU - Kasuya, J.
AU - Kataoka, Y.
AU - Kawaguchi, K.
AU - Kawai, N.
AU - Kawamura, S.
AU - Kawazoe, F.
AU - Kim, C.
AU - Kim, J.
AU - Kim, J. C.
AU - Kim, W.
AU - Kimura, N.
AU - Kitaoka, Y.
AU - Kobayashi, K.
AU - Kojima, Y.
AU - Kokeyama, K.
AU - Komori, K.
AU - Kotake, K.
AU - Kubo, K.
AU - Kumar, R.
AU - Kume, T.
AU - Kuroda, K.
AU - Kuwahara, Y.
AU - Lee, H. K.
AU - Lee, H. W.
AU - Lin, C. Y.
AU - Liu, Y.
AU - Majorana, E.
AU - Mano, S.
AU - Marchio, M.
AU - Matsui, T.
AU - Matsumoto, N.
AU - Matsushima, F.
AU - Michimura, Y.
AU - Mio, N.
AU - Miyakawa, O.
AU - Miyake, K.
AU - Miyamoto, A.
AU - Miyamoto, T.
AU - Miyo, K.
AU - Miyoki, S.
AU - Morii, W.
AU - Morisaki, S.
AU - Moriwaki, Y.
AU - Muraki, Y.
AU - Murakoshi, M.
AU - Musha, M.
AU - Nagano, K.
AU - Nagano, S.
AU - Nakamura, K.
AU - Nakamura, T.
AU - Nakano, H.
AU - Nakano, M.
AU - Nakano, M.
AU - Nakao, H.
AU - Nakao, K.
AU - Narikawa, T.
AU - Ni, W. T.
AU - Nonomura, T.
AU - Obuchi, Y.
AU - Oh, J. J.
AU - Oh, S. H.
AU - Ohashi, M.
AU - Ohishi, N.
AU - Ohkawa, M.
AU - Ohmae, N.
AU - Okino, K.
AU - Okutomi, K.
AU - Ono, K.
AU - Ono, Y.
AU - Oohara, K.
AU - Ota, S.
AU - Park, J.
AU - Peña Arellano, F. E.
AU - Pinto, I. M.
AU - Principe, M.
AU - Sago, N.
AU - Saijo, M.
AU - Saito, T.
AU - Saito, Y.
AU - Saitou, S.
AU - Sakai, K.
AU - Sakakibara, Y.
AU - Sasaki, Y.
AU - Sato, S.
AU - Sato, T.
AU - Sato, Y.
AU - Sekiguchi, T.
AU - Sekiguchi, Y.
AU - Shibata, M.
AU - Shiga, K.
AU - Shikano, Y.
AU - Shimoda, T.
AU - Shinkai, H.
AU - Shoda, A.
AU - Someya, N.
AU - Somiya, K.
AU - Son, E. J.
AU - Starecki, T.
AU - Suemasa, A.
AU - Sugimoto, Y.
AU - Susa, Y.
AU - Suwabe, H.
AU - Suzuki, T.
AU - Tachibana, Y.
AU - Tagoshi, H.
AU - Takada, S.
AU - Takahashi, H.
AU - Takahashi, R.
AU - Takamori, A.
AU - Takeda, H.
AU - Tanaka, H.
AU - Tanaka, K.
AU - Tanaka, T.
AU - Tatsumi, D.
AU - Telada, S.
AU - Tomaru, T.
AU - Tsubono, K.
AU - Tsuchida, S.
AU - Tsukada, L.
AU - Tsuzuki, T.
AU - Uchikata, N.
AU - Uchiyama, T.
AU - Uehara, T.
AU - Ueki, S.
AU - Ueno, K.
AU - Uraguchi, F.
AU - Ushiba, T.
AU - Van Putten, M. H.P.M.
AU - Wada, S.
AU - Wakamatsu, T.
AU - Yaginuma, T.
AU - Yamamoto, K.
AU - Yamamoto, S.
AU - Yamamoto, T.
AU - Yano, K.
AU - Yokoyama, J.
AU - Yokozawa, T.
AU - Yoon, T. H.
AU - Yuzurihara, H.
AU - Zeidler, S.
AU - Zhao, Y.
AU - Zheng, L.
AU - Agatsuma, K.
AU - Akiyama, Y.
AU - Arai, N.
AU - Asano, M.
AU - Bertolini, A.
AU - Fujisawa, M.
AU - Goetz, R.
AU - Guscott, J.
AU - Hashimoto, Y.
AU - Hayashida, Y.
AU - Hennes, E.
AU - Hirai, K.
AU - Hirayama, T.
AU - Ishitsuka, H.
AU - Kato, J.
AU - Khalaidovski, A.
AU - Koike, S.
AU - Kumeta, A.
AU - Miener, T.
AU - Morioka, M.
AU - Mueller, C. L.
AU - Narita, T.
AU - Oda, Y.
AU - Ogawa, T.
AU - Sekiguchi, T.
AU - Tamura, H.
AU - Tanner, D. B.
AU - Tokoku, C.
AU - Toritani, M.
AU - Utsuki, T.
AU - Uyeshima, M.
AU - Van Den Brand, J. F.J.
AU - Van Heijningen, J. V.
AU - Yamaguchi, S.
AU - Yanagida, A.
N1 - Funding Information: This work was supported by MEXT, the JSPS Leading-edge Research Infrastructure Program, a JSPS Grant-in-Aid for Specially Promoted Research 26000005, a MEXT Grant-in-Aid for Scientific Research on Innovative Areas 24103005, the JSPS Core-to-Core Program, A. Advanced Research Networks, and the joint research program of the Institute for Cosmic Ray Research. The magnetic field measurement shown in Appendix A.2 was supported by the Joint Usage/ Research Center program of the Earthquake Research Institute, the University of Tokyo. Part of the work was supported by the Advanced Technology Center (ATC) in the National Astronomical Observatory of Japan. Part of the work was supported by the National Research Foundation (NRF) and Computing Infrastructure Project of KISTI-GSDC in Korea. This research activity has also been supported by the European Commission within the Seventh Framework Programme (FP7)—Project ELiTES (GA 295153). The authors would like to express a sincere appreciation to colleagues in the LIGO and Virgo groups for their varied and continuing support. The authors would like to thank Albrecht Rüdiger for editorial support for this paper. Additionally, the authors also appreciate the intense efforts of the secretaries in the ICRR GW project office. Funding Information: This work was supported by MEXT, the JSPS Leading-edge Research Infrastructure Program, a JSPS Grant-in-Aid for Specially Promoted Research 26000005, a MEXT Grant-in-Aid for Scientific Research on Innovative Areas 24103005, the JSPS Core-to-Core Program, A. Advanced Research Networks, and the joint research program of the Institute for Cosmic Ray Research. The magnetic field measurement shown in Appendix A.2 was supported by the Joint Usage/ Research Center program of the Earthquake Research Institute, the University of Tokyo. Part of the work was supported by the Advanced Technology Center (ATC) in the National Astronomical Observatory of Japan. Part of the work was supported by the National Research Foundation (NRF) and Computing Infrastructure Project of KISTI-GSDC in Korea. This research activity has also been supported by the European Commission within the Seventh Framework Programme (FP7)-Project ELiTES (GA 295153). The authors would like to express a sincere appreciation to colleagues in the LIGO and Virgo groups for their varied and continuing support. The authors would like to thank Albrecht Rüdiger for editorial support for this paper. Additionally, the authors also appreciate the intense efforts of the secretaries in the ICRR GW project office. Publisher Copyright: © The Author(s) 2018. Published by Oxford University Press on behalf of the Physical Society of Japan.
PY - 2018/1/1
Y1 - 2018/1/1
N2 - The major construction and initial-phase operation of a second-generation gravitational-wave detector, KAGRA, has been completed. The entire 3 km detector is installed underground in a mine in order to be isolated from background seismic vibrations on the surface. This allows us to achieve a good sensitivity at low frequencies and high stability of the detector. Bare-bones equipment for the interferometer operation has been installed and the first test run was accomplished in March and April of 2016 with a rather simple configuration. The initial configuration of KAGRA is called iKAGRA. In this paper, we summarize the construction of KAGRA, including a study of the advantages and challenges of building an underground detector, and the operation of the iKAGRA interferometer together with the geophysics interferometer that has been constructed in the same tunnel.
AB - The major construction and initial-phase operation of a second-generation gravitational-wave detector, KAGRA, has been completed. The entire 3 km detector is installed underground in a mine in order to be isolated from background seismic vibrations on the surface. This allows us to achieve a good sensitivity at low frequencies and high stability of the detector. Bare-bones equipment for the interferometer operation has been installed and the first test run was accomplished in March and April of 2016 with a rather simple configuration. The initial configuration of KAGRA is called iKAGRA. In this paper, we summarize the construction of KAGRA, including a study of the advantages and challenges of building an underground detector, and the operation of the iKAGRA interferometer together with the geophysics interferometer that has been constructed in the same tunnel.
UR - http://www.scopus.com/inward/record.url?scp=85046037804&partnerID=8YFLogxK
U2 - 10.1093/ptep/ptx180
DO - 10.1093/ptep/ptx180
M3 - Article
AN - SCOPUS:85046037804
SN - 2050-3911
VL - 2018
JO - Progress of Theoretical and Experimental Physics
JF - Progress of Theoretical and Experimental Physics
IS - 1
M1 - 013F01
ER -