Construction of spatiotemporal neonatal cortical surface atlases using a large-scale dataset

Zhengwang Wu, Gang Li, Li Wang, Weili Lin, John H. Gilmore, Dinggang Shen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Citations (Scopus)


The cortical surface atlases constructed from a large representative population of neonates are highly needed in the neonatal neuroimaging studies. However, existing neonatal cortical surface atlases are typically constructed from small datasets, e.g., tens of subjects, which are inherently biased and thus are not representative to the neonatal population. In this paper, we construct neonatal cortical surface atlases based on a large-scale dataset with 764 subjects. To better characterize the dynamic cortical development during the first postnatal weeks, instead of constructing just a single atlas, we construct a set of spatiotemporal atlases at each week from 39 to 44 gestational weeks. The central idea is that, for all cortical surfaces, we first group-wisely register them into the common space to ensure the unbiasedness. Then, rather than simply averaging over the co-registered cortical surfaces, which generally leads to over-smoothed cortical folding patterns, we adopt a spherical patch-based sparse representation using an augmented dictionary to overcome the noises and potential registration errors. Through the group-wise sparsity constraint, we obtain consistent geometric cortical folding attributes on the atlases. Our atlases preserve the sharp cortical folding patterns, thus leading to better registration accuracy when aligning new subjects onto the atlases.

Original languageEnglish
Title of host publication2018 IEEE 15th International Symposium on Biomedical Imaging, ISBI 2018
PublisherIEEE Computer Society
Number of pages4
ISBN (Electronic)9781538636367
Publication statusPublished - 2018 May 23
Event15th IEEE International Symposium on Biomedical Imaging, ISBI 2018 - Washington, United States
Duration: 2018 Apr 42018 Apr 7

Publication series

NameProceedings - International Symposium on Biomedical Imaging
ISSN (Print)1945-7928
ISSN (Electronic)1945-8452


Other15th IEEE International Symposium on Biomedical Imaging, ISBI 2018
Country/TerritoryUnited States

Bibliographical note

Publisher Copyright:
© 2018 IEEE.


  • Sparse representation
  • Surface atlas

ASJC Scopus subject areas

  • Biomedical Engineering
  • Radiology Nuclear Medicine and imaging


Dive into the research topics of 'Construction of spatiotemporal neonatal cortical surface atlases using a large-scale dataset'. Together they form a unique fingerprint.

Cite this