Abstract
Two-stage dilute acid pretreatment followed by enzymatic cellulose hydrolysis is an effective method for obtaining high sugar yields from wood residues such as softwood forest thinnings. In the first-stage hydrolysis step, most of the hemicellulose is solubilized using relatively mild conditions. The soluble hemicellulosic sugars are recovered from the hydrolysate slurry by washing with water. The washed solids are then subjected to more severe hydrolysis conditions to hydrolyze approx 50% of the cellulose to glucose. The remaining cellulose can further be hydrolyzed with cellulase enzyme. Our process simulation indicates that the amount of water used in the hemicellulose recovery step has a significant impact on the cost of ethanol production. It is important to keep water usage as low as possible while maintaining relatively high recovery of soluble sugars. To achieve this objective, a proto-type pilot-scale continuous countercurrent screw extractor was evaluated for the recovery of hemicellulose from pretreated forest thinnings. Using the 274-cm (9-ft) long extractor, solubles recoveries of 98, 91, and 77% were obtained with liquid-to-insoluble solids (L/IS)ratios of 5.6, 3.4, and 2.1, respectively. An empirical equation was developed to predict the performance of the screw extractor. This equation predicts that soluble sugar recovery above 95% can be obtained with an L/IS ratio as low as 3.0.
Original language | English |
---|---|
Pages (from-to) | 253-267 |
Number of pages | 15 |
Journal | Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology |
Volume | 91-93 |
DOIs | |
Publication status | Published - 2001 |
Externally published | Yes |
Bibliographical note
Funding Information:This work was funded by the U.S. Department of Energy, Office of Fuels Development.
Keywords
- Acid hydrolysis
- Extraction
- Hemicellulose
- Pretreatment
- Softwood
ASJC Scopus subject areas
- Biotechnology
- Bioengineering
- Biochemistry
- Applied Microbiology and Biotechnology
- Molecular Biology