Abstract
We synthesized single-crystalline Sn-based oxides for use as electron-transporting layers (ETLs) in perovskite solar cells (PSCs). The control of the Zn-to-Sn cation ratio (Zn/Sn = 0-2) in a fixed concentration of hydrazine solution leads to the formation of various types of Sn-based oxides, i.e., spherical SnO2 and Zn2SnO4 nanoparticles (NPs), SnO2 nanorods, and Zn2SnO4 nanocubes. In particular, a ratio of Zn/Sn = 1 results in nanocomposites of single-crystalline SnO2 nanorods and Zn2SnO4 nanocubes. This is related to the concentration of free hydrazine unreacted with Zn and Sn ions in the reaction solution, because the resulting OH− concentration affects the growth rate of intermediate phases such as ZnSn(OH)6, Zn(OH)42− and Sn(OH)62−. Additionally, we propose plausible pathways for the formation of Sn-based oxides in hydrazine solution. The Sn-based oxides are applied as ETLs and annealed at a low temperature below 150 °C in PSCs. The PSCs fabricated by using the nanocomposite ETLs consisting of single-crystalline SnO2 nanorods and Zn2SnO4 nanocubes exhibit superior device performance to TiO2-based PSCs due to their excellent charge collection ability and optical properties, achieving a power conversion efficiency of ≥17%.
Original language | English |
---|---|
Pages (from-to) | 79-86 |
Number of pages | 8 |
Journal | Journal of Materials Chemistry A |
Volume | 5 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2017 |
Externally published | Yes |
Bibliographical note
Funding Information:This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Ministry of Science, ICT & Future Planning (MSIP) of Korea under contract number. NRF-2011-0031565 (Global Frontier R&D Program for Multiscale Energy System), and NRF-2015M1A2A2056542 (climate change program), and NRF-2016R1A5A1009926 (Wearable platform Materials Technology Center: ERC program). This work was also supported by the KRICT-SKKU DRC program.
Publisher Copyright:
© The Royal Society of Chemistry.
ASJC Scopus subject areas
- Chemistry(all)
- Renewable Energy, Sustainability and the Environment
- Materials Science(all)