Abstract
Potassium-ion batteries (KIBs) are considered as promising alternatives to lithium-ion batteries owing to the abundance and affordability of potassium. However, the development of suitable electrode materials that can stably store large-sized K ions remains a challenge. This study proposes a facile impregnation method for synthesizing ultrafine cobalt–iron bimetallic selenides embedded in hollow mesoporous carbon nanospheres (HMCSs) as superior anodes for KIBs. This involves loading metal precursors into HMCS templates using a repeated “drop and drying” process followed by selenization at various temperatures, facilitating not only the preparation of bimetallic selenide/carbon composites but also controlling their structures. HMCSs serve as structural skeletons, conductive templates, and vehicles to restrain the overgrowth of bimetallic selenide particles during thermal treatment. Various analysis strategies are employed to investigate the charge–discharge mechanism of the new bimetallic selenide anodes. This unique-structured composite exhibits a high discharge capacity (485 mA h g−1 at 0.1 A g−1 after 200 cycles) and enhanced rate capability (272 mA h g−1 at 2.0 A g−1) as a promising anode material for KIBs. Furthermore, the electrochemical properties of various nanostructures, from hollow to frog egg-like structures, obtained by adjusting the selenization temperature, are compared.
Original language | English |
---|---|
Article number | 2002345 |
Journal | Small |
Volume | 16 |
Issue number | 33 |
DOIs | |
Publication status | Published - 2020 Aug 1 |
Bibliographical note
Funding Information:S.H.Y. and S.‐K.P. contributed equally to this work. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF‐2019R1A2C2088047).
Publisher Copyright:
© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Keywords
- bimetallic selenides
- carbon nanospheres
- electrode materials
- potassium-ion batteries
- templated methods
ASJC Scopus subject areas
- Biotechnology
- Biomaterials
- Chemistry(all)
- Materials Science(all)