Crack-tip stress field of fully circumferential cracked pipe under combined tension and thermal loads

Jin Ho Je, Dong Jun Kim, Keun Hyung Bae, Yun-Jae Kim

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In the presence of excessive plasticity, the fracture toughness depends on the size and geometry. For material under fully yielded conditions, the stresses near the crack tip are not unique, but depend on geometry. So Single-parameter; Japproach is limited to high-constraint crack geometry. J-Q theory has been proposed in order to decide crack geometry constraint. This approach assumes that the crack-tip fields have two degrees of freedom. In this paper, based on J-Q theory, crack-tip stress field of fully circumferential cracked pipe under combined load is investigated using FE analysis. Combined loads are tensile axial force and thermal gradient of radial direction. Q-stresses of a crack geometry and it's loading state are used to determine constraint effect, and give a characteristic order for crack-tip constraint.

Original languageEnglish
Title of host publicationAmerican Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
PublisherAmerican Society of Mechanical Engineers (ASME)
Volume1
ISBN (Print)9780791845981
DOIs
Publication statusPublished - 2014 Jan 1
EventASME 2014 Pressure Vessels and Piping Conference, PVP 2014 - Anaheim, United States
Duration: 2014 Jul 202014 Jul 24

Other

OtherASME 2014 Pressure Vessels and Piping Conference, PVP 2014
Country/TerritoryUnited States
CityAnaheim
Period14/7/2014/7/24

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Crack-tip stress field of fully circumferential cracked pipe under combined tension and thermal loads'. Together they form a unique fingerprint.

Cite this