Abstract
Chronic myeloid leukemia (CML) is a reciprocal translocation disorder driven by a breakpoint cluster region (BCR)-Abelson leukemia virus (ABL) fusion gene that stimulates abnormal tyrosine kinase activity. Tyrosine kinase inhibitors (TKIs) are effective in treating Philadelphia chromosome (Ph) + CML patients. However, the appearance of TKI-resistant CML cells is a hurdle in CML treatment. Therefore, it is necessary to identify novel alternative treatments targeting tyrosine kinases. This study was designed to determine whether C-X-C chemokine receptor 2 (CXCR2) could be a novel target for TKI-resistant CML treatment. Interleukin 8 (IL-8), a CXCR2 ligand, was significantly increased in the bone marrow serum of initially diagnosed CML patients and TKI-resistant CML cell conditioned media. CXCR2 antagonists suppressed the proliferation of CML cells via cell cycle arrest in the G2/M phase. CXCR2 inhibition also attenuated mTOR, c-Myc, and BCR-ABL expression, leading to CML cell apoptosis, irrespective of TKI responsiveness. Moreover, SB225002, a CXCR2 antagonist, caused higher cell death in TKI-resistant CML cells than TKIs. Using a mouse xenograft model, we confirmed that SB225002 suppresses tumor growth, with a prominent effect on TKI-resistant CML cells. Our findings demonstrate that IL-8 is a prognostic factor for the progression of CML. Inhibiting the CXCR2-mTOR-c-Myc cascade is a promising therapeutic strategy to overcome TKI-sensitive and TKI-insensitive CML. Thus, CXCR2 blockade is a novel therapeutic strategy to treat CML, and SB225002, a commercially available CXCR2 antagonist, might be a candidate drug that could be used to treat TKI-resistant CML.
Original language | English |
---|---|
Article number | 114658 |
Journal | Biochemical Pharmacology |
Volume | 190 |
DOIs | |
Publication status | Published - 2021 Aug |
Bibliographical note
Funding Information:This study was supported by the Bio & Medical Technology Development Program of the National Research Foundation, funded by the Ministry of Science & ICT (2017M3A9C8060403).
Publisher Copyright:
© 2021 Elsevier Inc.
Keywords
- CXCR2
- Drug resistance
- IL-8
- Tyrosine kinase inhibitors
- c-Myc
- mTOR
ASJC Scopus subject areas
- Biochemistry
- Pharmacology