Abstract
A three-dimensional Mn(II) framework, [Mn2(H2L)(L)0.5(MeOH)(DEF)]·0.1MeOH·0.1DEF·1.4H2O (1; H4L = 2,3-dioxido-1,4-benzenedicarboxylic acid), was synthesized under solvothermal conditions in diethylformamide/methanol (DEF/MeOH), where the Mn centers adopt octahedral and unusual pentagonal bipyramidal geometries. The ligand H4L was subject to deprotonation to create μ4-H2L2- and μ6-L4- anionic bridges, leading to the construction of a coordination network. The MeOH exchange process of crystalline 1 allowed for another crystalline phase (1a), which reversibly returned to the original crystalline state upon resolvation in DEF/MeOH. After evacuation of 1a, the amorphous phase 1b was irreversibly formed, followed by the restoration of the original phase 1 upon resolvation in DEF/MeOH. Consequently, this framework underwent cyclic structural transformations from the crystalline (1) to crystalline (1a) to amorphous (1b) and back to crystalline (1) phase, which are unique transformations for soft coordination networks. Magnetic measurements demonstrated that antiferromagnetic interactions were operative between the Mn(II) ions and were effectively mediated by the oxygen moieties of the μ6-L4- bridge.
Original language | English |
---|---|
Pages (from-to) | 3360-3365 |
Number of pages | 6 |
Journal | Crystal Growth and Design |
Volume | 18 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2018 Jun 6 |
Bibliographical note
Publisher Copyright:Copyright © 2018 American Chemical Society.
ASJC Scopus subject areas
- General Chemistry
- General Materials Science
- Condensed Matter Physics