Decellularized PLGA-based scaffolds and their osteogenic potential with bone marrow stromal cells

Yu Jin Hong, Soon Eon Bae, Sun Hee Do, Ik Hwan Kim, Dong Keun Han, Kwideok Park

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

A cell-derived extracellular matrix (ECM) was naturally obtained and its effect on the induction of osteogenesis of bone marrow stromal cells (BMSCs) was investigated. Once porous composite scaffolds made of poly(L-lactic-co-glycolic acid) (PLGA), hydroxyapatite (HA), and β-tricalcium phosphate (β-TCP) were fabricated, these scaffolds were seeded with fibroblasts or preosteoblasts and cultured in vitro. They were then subjected to decellularization, resulting in fibroblasts-decellularized scaffolds (FDS) or preosteoblasts-decellularized scaffolds (PDS). Both fibronectin and type I collagen were clearly detected from the immunofluorescent staining of FDS and PDS, respectively. When the rabbit BMSCs-loaded scaffolds were cultured in the osteogenic medium for 4 weeks, the osteogenic potential of FDS and PDS was much greater than the PLGA/HA/β-TCP (control), as identified by histological staining and the alkaline phosphatase (ALP) activity. Meanwhile, when BMSC-seeded FDS was implanted subcutaneously into the nude mice, the results also indicated more upregulated osteogenic differentiation of BMSCs in vivo compared to the control. This study suggests that the microenvironment created by cell-derived ECM can provide a favorable template in prompting the osteogenesis of BMSCs.

Original languageEnglish
Pages (from-to)1090-1096
Number of pages7
JournalMacromolecular Research
Volume19
Issue number10
DOIs
Publication statusPublished - 2011 Oct

Keywords

  • bone marrow stromal cells
  • decellularization
  • extracellular matrix
  • osteogenic differentiation
  • scaffold

ASJC Scopus subject areas

  • Chemical Engineering(all)
  • Organic Chemistry
  • Polymers and Plastics
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Decellularized PLGA-based scaffolds and their osteogenic potential with bone marrow stromal cells'. Together they form a unique fingerprint.

Cite this