Decoding of Grasp Motions from EEG Signals Based on a Novel Data Augmentation Strategy

Jeong Hyun Cho, Ji Hoon Jeong, Seong Whan Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Citations (Scopus)

Abstract

Electroencephalogram (EEG) based braincomputer interface (BCI) systems are useful tools for clinical purposes like neural prostheses. In this study, we collected EEG signals related to grasp motions. Five healthy subjects participated in this experiment. They executed and imagined five sustained-grasp actions. We proposed a novel data augmentation method that increases the amount of training data using labels obtained from electromyogram (EMG) signals analysis. For implementation, we recorded EEG and EMG simultaneously. The data augmentation over the original EEG data concluded higher classification accuracy than other competitors. As a result, we obtained the average classification accuracy of 52.49(±8.74)% for motor execution (ME) and 40.36(±3.39)% for motor imagery (MI). These are 9.30% and 6.19% higher, respectively than the result of the comparable methods. Moreover, the proposed method could minimize the need for the calibration session, which reduces the practicality of most BCIs. This result is encouraging, and the proposed method could potentially be used in future applications such as a BCI-driven robot control for handling various daily use objects.

Original languageEnglish
Title of host publication42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEnabling Innovative Technologies for Global Healthcare, EMBC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3015-3018
Number of pages4
ISBN (Electronic)9781728119908
DOIs
Publication statusPublished - 2020 Jul
Event42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020 - Montreal, Canada
Duration: 2020 Jul 202020 Jul 24

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2020-July
ISSN (Print)1557-170X

Conference

Conference42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
Country/TerritoryCanada
CityMontreal
Period20/7/2020/7/24

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Decoding of Grasp Motions from EEG Signals Based on a Novel Data Augmentation Strategy'. Together they form a unique fingerprint.

Cite this