Abstract
We present a fast and accurate non-invasive brain-machine interface (BMI) based on demodulating steady-state visual evoked potentials (SSVEPs) in electroencephalography (EEG). Our study reports an SSVEP-BMI that, for the first time, decodes primarily based on top-down and not bottom-up visual information processing. The experimental setup presents a grid-shaped flickering line array that the participants observe while intentionally attending to a subset of flickering lines representing the shape of a letter. While the flickering pixels stimulate the participant's visual cortex uniformly with equal probability, the participant's intention groups the strokes and thus perceives a 'letter Gestalt'. We observed decoding accuracy of 35.81% (up to 65.83%) with a regularized linear discriminant analysis; on average 2.05-fold, and up to 3.77-fold greater than chance levels in multi-class classification. Compared to the EEG signals, an electrooculogram (EOG) did not significantly contribute to decoding accuracies. Further analysis reveals that the top-down SSVEP paradigm shows the most focalised activation pattern around occipital visual areas; Granger causality analysis consistently revealed prefrontal top-down control over early visual processing. Taken together, the present paradigm provides the first neurophysiological evidence for the top-down SSVEP BMI paradigm, which potentially enables multi-class intentional control of EEG-BMIs without using gaze-shifting.
Original language | English |
---|---|
Article number | 36267 |
Journal | Scientific reports |
Volume | 6 |
DOIs | |
Publication status | Published - 2016 Nov 3 |
Bibliographical note
Funding Information:This work was supported by the Basic Science Research Program (2015R1A1A1A05027233 to B.-K.M.) and the BK21 Plus program (to B.-K.M. and K.-R.M.), which are funded by the Ministry of Science, ICT and Future Planning through the National Research Foundation of Korea; the German Federal Ministry for Education and Research (BMBF: 01IS14013A to K.-R.M.).
Publisher Copyright:
© The Author(s) 2016.
ASJC Scopus subject areas
- General