Abstract
Objective: Measurement of the liver and spleen volumes has clinical implications. Although computed tomography (CT) volumetry is considered to be the most reliable noninvasive method for liver and spleen volume measurement, it has limited application in clinical practice due to its time-consuming segmentation process. We aimed to develop and validate a deep learning algorithm (DLA) for fully automated liver and spleen segmentation using portal venous phase CT images in various liver conditions. Materials and Methods: A DLA for liver and spleen segmentation was trained using a development dataset of portal venous CT images from 813 patients. Performance of the DLA was evaluated in two separate test datasets: dataset-1 which included 150 CT examinations in patients with various liver conditions (i.e., healthy liver, fatty liver, chronic liver disease, cirrhosis, and post-hepatectomy) and dataset-2 which included 50 pairs of CT examinations performed at ours and other institutions. The performance of the DLA was evaluated using the dice similarity score (DSS) for segmentation and Bland-Altman 95% limits of agreement (LOA) for measurement of the volumetric indices, which was compared with that of ground truth manual segmentation. Results: In test dataset-1, the DLA achieved a mean DSS of 0.973 and 0.974 for liver and spleen segmentation, respectively, with no significant difference in DSS across different liver conditions (p = 0.60 and 0.26 for the liver and spleen, respectively). For the measurement of volumetric indices, the Bland-Altman 95% LOA was-0.17 ± 3.07% for liver volume and-0.56 ± 3.78% for spleen volume. In test dataset-2, DLA performance using CT images obtained at outside institutions and our institution was comparable for liver (DSS, 0.982 vs. 0.983; p = 0.28) and spleen (DSS, 0.969 vs. 0.968; p = 0.41) segmentation. Conclusion: The DLA enabled highly accurate segmentation and volume measurement of the liver and spleen using portal venous phase CT images of patients with various liver conditions.
Original language | English |
---|---|
Pages (from-to) | 987-997 |
Number of pages | 11 |
Journal | Korean journal of radiology |
Volume | 21 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2020 Aug |
Bibliographical note
Funding Information:Received: March 6, 2020 Revised: May 6, 2020 Accepted: May 11, 2020 This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020R1F1A1048826) and the Bio and Medical Technology Development Program of the NRF, which is funded by the Ministry of Science and ICT (NRF-2016M3A9A7918706). *These authors contributed equally to this work. Corresponding author: Seung Soo Lee, MD, PhD, Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea. • E-mail: [email protected]; and Heung-Il Suk, PhD, Department of Artificial Intelligence, Department of Brain and Cognitive Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea. • E-mail: [email protected] This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https:// creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Funding Information:
This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020R1F1A1048826) and the Bio and Medical Technology Development Program of the NRF, which is funded by the Ministry of Science and ICT (NRF-2016M3A9A7918706).Acknowledgments Seung Soo Lee was responsible for the clinical study, and Heung-Il Suk was responsible for the development of the deep learning algorithm. Both authors contributed equally to this study and assume the role of corresponding authors.
Publisher Copyright:
© 2020 The Korean Society of Radiology.
Keywords
- Artificial intelligence
- Deep learning
- Liver
- Segmentation
- Spleen
- Volumetry
ASJC Scopus subject areas
- Radiology Nuclear Medicine and imaging