Abstract
Objectives: Accurately predicting when patients with mild cognitive impairment (MCI) will progress to dementia is a formidable challenge. This work aims to develop a predictive deep learning model to accurately predict future cognitive decline and magnetic resonance imaging (MRI) marker changes over time at the individual level for patients with MCI. Methods: We recruited 657 amnestic patients with MCI from the Samsung Medical Center who underwent cognitive tests, brain MRI scans, and amyloid-β (Aβ) positron emission tomography (PET) scans. We devised a novel deep learning architecture by leveraging an attention mechanism in a recurrent neural network. We trained a predictive model by inputting age, gender, education, apolipoprotein E genotype, neuropsychological test scores, and brain MRI and amyloid PET features. Cognitive outcomes and MRI features of an MCI subject were predicted using the proposed network. Results: The proposed predictive model demonstrated good prediction performance (AUC = 0.814 ± 0.035) in five-fold cross-validation, along with reliable prediction in cognitive decline and MRI markers over time. Faster cognitive decline and brain atrophy in larger regions were forecasted in patients with Aβ (+) than with Aβ (−). Conclusion: The proposed method provides effective and accurate means for predicting the progression of individuals within a specific period. This model could assist clinicians in identifying subjects at a higher risk of rapid cognitive decline by predicting future cognitive decline and MRI marker changes over time for patients with MCI. Future studies should validate and refine the proposed predictive model further to improve clinical decision-making.
Original language | English |
---|---|
Article number | 1356745 |
Journal | Frontiers in Aging Neuroscience |
Volume | 16 |
DOIs | |
Publication status | Published - 2024 |
Bibliographical note
Publisher Copyright:Copyright © 2024 Jung, Kim, Kim, Jang, Park, Kim, Na, Seo and Suk.
Keywords
- Alzheimer’s disease
- cognitive decline
- deep learning
- magnetic resonance imaging
- mild cognitive impairment
- missing value imputation
- predictive model
- prognosis
ASJC Scopus subject areas
- Ageing
- Cognitive Neuroscience