Abstract
Large-scale and openly available material science databases are mainly composed of computer simulation results rather than experimental data. Some examples include the Materials Project, Open Quantum Materials Database, and Open Catalyst 2022. Unfortunately, building large-scale experimental databases remains challenging due to the difficulties in consolidating locally distributed datasets. In this work, focusing on the catalysis literature of CO2 reduction reactions (CO2RRs), we present a machine learning (ML)-based protocol for selecting highly relevant papers and extracting important experimental data. First, we report a document embedding method (Doc2Vec) for collecting papers of greatest relevance to the specific target domain, which yielded 3154 CO2RR-related papers from six publishers. Next, we developed named entity recognition (NER) models to extract twelve entities related to material names (catalyst, electrolyte, etc.) and catalytic performance (Faradaic efficiency, current density, etc.). Among several tested models, the MatBERT-based approach achieved the highest accuracy, with an average F1-score of 90.4% and an F1-score of 95.2% in a boundary relaxation evaluation scheme. The accurate and accelerated NER-based data extraction from a large volume of catalysis literature enables temporal trend analyses of the CO2RR catalysts, products, and performances, revealing the potentially effective material space in CO2RRs. While this work demonstrates the effectiveness of our ML-based text mining methods for specifically CO2RR literature, the methods and approach are applicable to and may be used to accelerate the development of other catalytic chemical reactions.
Original language | English |
---|---|
Pages (from-to) | 17628-17643 |
Number of pages | 16 |
Journal | Journal of Materials Chemistry A |
Volume | 11 |
Issue number | 33 |
DOIs | |
Publication status | Published - 2023 Jul 19 |
Bibliographical note
Publisher Copyright:© 2023 The Royal Society of Chemistry.
ASJC Scopus subject areas
- General Chemistry
- Renewable Energy, Sustainability and the Environment
- General Materials Science