Abstract
In this paper, we propose a novel architecture of a deep neural network for EEG-based motor imagery classification. Unlike the existing deep neural networks in the literature, the proposed network allows us to analyze the learned network weights from a neurophysiological perspective, thus providing an insight into the underlying patterns inherent in motor imagery induced EEG signals. In order to validate the effectiveness of the proposed method, we conducted experiments on the BCI Competition IV-IIa dataset by comparing with the competing methods in terms of the Cohen's k value. For qualitative analysis, we also performed visual inspection of the activation patterns estimated from the learned network weights.
Original language | English |
---|---|
Title of host publication | 2018 6th International Conference on Brain-Computer Interface, BCI 2018 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1-3 |
Number of pages | 3 |
ISBN (Electronic) | 9781538625743 |
DOIs | |
Publication status | Published - 2018 Mar 9 |
Event | 6th International Conference on Brain-Computer Interface, BCI 2018 - GangWon, Korea, Republic of Duration: 2018 Jan 15 → 2018 Jan 17 |
Publication series
Name | 2018 6th International Conference on Brain-Computer Interface, BCI 2018 |
---|---|
Volume | 2018-January |
Other
Other | 6th International Conference on Brain-Computer Interface, BCI 2018 |
---|---|
Country/Territory | Korea, Republic of |
City | GangWon |
Period | 18/1/15 → 18/1/17 |
Bibliographical note
Publisher Copyright:© 2018 IEEE.
Keywords
- Brain-Computer Interface
- Deep Learning
- Electroencephalogram
- Motor Imagery
- Recurrent Convolutional Neural Network
ASJC Scopus subject areas
- Artificial Intelligence
- Human-Computer Interaction
- Behavioral Neuroscience