Abstract
Automated breast ultrasound (ABUS) is a new and promising tool for diagnosing breast cancer. However, reviewing ABUS images is extremely time-consuming and oversight errors could happen. We propose a novel 3D convolutional network for automatic cancer detection in ABUS. Our contribution is twofold. First, we propose a threshold loss function to provide voxel-level adaptive threshold for discriminating cancer and non-cancer, thus achieving high sensitivity with low FPs. Second, we propose a densely deep supervision (DDS) mechanism to improve the sensitivity significantly by utilizing multi-scale discriminative features of all layers. Both class-balanced cross entropy loss and overlap loss are employed to enhance DDS performance. The efficacy of the proposed network is validated on a dataset of 196 patients with 661 cancer regions. The 4-fold cross-validation experiments show our network obtains a sensitivity of 93% with 2.2 FPs per ABUS volume. Our proposed novel network can provide an accurate and automatic cancer detection tool for breast cancer screening by maintaining high sensitivity with low FPs.
Original language | English |
---|---|
Title of host publication | Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings |
Editors | Alejandro F. Frangi, Gabor Fichtinger, Julia A. Schnabel, Carlos Alberola-López, Christos Davatzikos |
Publisher | Springer Verlag |
Pages | 641-648 |
Number of pages | 8 |
ISBN (Print) | 9783030009366 |
DOIs | |
Publication status | Published - 2018 |
Event | 21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018 - Granada, Spain Duration: 2018 Sept 16 → 2018 Sept 20 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 11073 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Other
Other | 21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018 |
---|---|
Country/Territory | Spain |
City | Granada |
Period | 18/9/16 → 18/9/20 |
Bibliographical note
Funding Information:Acknowledgments. This work was supported in part by the National Natural Science Foundation of China under Grant 61571304, Grant 61701312, and in part by the Shenzhen Peacock Plan under Grant KQTD2016053112051497.
Publisher Copyright:
© 2018, Springer Nature Switzerland AG.
ASJC Scopus subject areas
- Theoretical Computer Science
- General Computer Science