Abstract
Relevant statistical modeling and analysis of dental data can improve diagnostic and treatment procedures. The purpose of this study is to demonstrate the use of various data mining algorithms to characterize patients with dentofacial deformities. A total of 72 patients with skeletal malocclusions who had completed orthodontic and orthognathic surgical treatments were examined. Each patient was characterized by 22 measurements related to dentofacial deformities. Clustering analysis and visualization grouped the patients into three different patterns of dentofacial deformities. A feature selection approach based on a false discovery rate was used to identify a subset of 22 measurements important in categorizing these three clusters. Finally, classification was performed to evaluate the quality of the measurements selected by the feature selection approach. The results showed that feature selection improved classification accuracy while simultaneously determining which measurements were relevant.
Original language | English |
---|---|
Article number | e67862 |
Journal | PloS one |
Volume | 8 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2013 Aug 5 |
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)
- Agricultural and Biological Sciences(all)
- General