Abstract
We have investigated the changes in the magnetic, phase-transformation and microstructural properties of Nd-Fe-B sintered magnets as a function of Cu content (0.2-0.5 at.%). The coercivity decreased (28.7 → 27.1 kOe) with increasing Cu content without changing the remanence of the magnets under the normal post-sintering annealing (PSA) conditions. Phase-transformation temperature changes of the magnet were observed as the Cu content of the magnet was increased. In the 0.2 at.% Cu magnet, the triple junction phase (TJP) and grain boundary phase (GBP), composed of the Cu-enriched C-Nd2O 3 phase, were formed. However, in the 0.5 at.% Cu magnet, the TJP and GBP were composed of the h-Nd2O3 phase. By considering the dependence of Cu content on the phase transformation, we have modified the 1st-PSA temperature to recover the coercivity. Through our newly established PSA conditions, the TJP and GBP in the 0.5 at.% Cu magnet were formed as the C-Nd2O3 phase. As a result, the coercivity of the magnet was noticeably enhanced (27.1 → 29.4 kOe). The reasons for the coercivity deterioration in the high-Cu-content magnet were clarified. The detailed mechanism of the microstructural and magnetic property improvements induced by the modified 1st-PSA condition is discussed. The critical role of Cu in the microstructural changes of Nd-rich TJP and GBP during the PSA is also analyzed based on these results.
Original language | English |
---|---|
Pages (from-to) | 12-21 |
Number of pages | 10 |
Journal | Acta Materialia |
Volume | 66 |
DOIs | |
Publication status | Published - 2014 Mar |
Keywords
- Cu content
- Nd-Fe-B sintered magnets
- Nd-rich phase
- Phase-transformation temperature
- Post-sintering annealing
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Polymers and Plastics
- Metals and Alloys