Abstract
In this paper we introduce the design of a light-weight novel flexible-joint arm for light-weight unmanned aerial vehicles (UAVs), which can be used both for safe physical interaction with the environment and it represents also a preliminary step in the direction of performing quick motions for tasks such as hammering or throwing. The actuator consists of an active pulley driven by a rotational servo motor, a passive pulley which is attached to a rigid link, and the elastic connections (springs) between these two pulleys. We identify the physical parameters of the system, and use an optimal control strategy to maximize its velocity by taking advantage of elastic components. The prototype can be extended to a light-weight variable stiffness actuator. The flexible-joint arm is applied on a quadrotor, to be used in aerial physical interaction tasks, which implies that the elastic components can also be used for stable interaction absorbing the interactive disturbances which might damage the flying system and its hardware. The design is validated through several experiments, and future developments are discussed in the paper.
Original language | English |
---|---|
Article number | 7139280 |
Pages (from-to) | 870-876 |
Number of pages | 7 |
Journal | Proceedings - IEEE International Conference on Robotics and Automation |
Volume | 2015-June |
Issue number | June |
DOIs | |
Publication status | Published - 2015 Jun 29 |
Event | 2015 IEEE International Conference on Robotics and Automation, ICRA 2015 - Seattle, United States Duration: 2015 May 26 → 2015 May 30 |
ASJC Scopus subject areas
- Software
- Control and Systems Engineering
- Artificial Intelligence
- Electrical and Electronic Engineering